Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

A Comparison Between External and Internal Resonators Employment to Reduce the Gas-Dynamic Noise of a SI Engine

2014-10-13
2014-01-2864
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern spark-ignition (SI) engines show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels.
Journal Article

CFD Gas-Dynamic Noise Prediction of a VVA Engine Intake System

2013-05-13
2013-01-1884
Modern VVA systems offer new potentialities in improving fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of modifying the intake valve opening, closing and lift, leading to the development of almost ‘throttle-less’ engines. However, at low loads, the absence of throttling, while improving the fuel consumption, also produces an increased gas-dynamic noise at the intake mouth. Wave propagation inside the intake system is in fact no longer absorbed by the throttle valve and directly impact the radiated noise. In the paper, 1D and 3D simulations of the gas-dynamic noise radiated by a production VVA engine are performed at full load and in two part-load conditions. Both models are firstly validated at full load, through comparisons with experimental data.
Technical Paper

The Prediction of the Performance and Gasdynamic Noise Emitted by a Medium-Size Spark-Ignition Engine by Means of 1D and 3D Analyses

2007-04-16
2007-01-0380
An experimental and numerical work has been performed to characterize the performance of a medium-size spark-ignition engine and the related gas-dynamic noise emitted at the intake mouth. The noise attenuation of the main component of the intake system, namely the air flow box, has been experimentally measured and compared to the numerical results obtained using a tri-dimensional code. Then, the 3D-CFD code has been used to improve the noise attenuation of the above component through the introduction of a Helmholtz and a column resonator along the inflow pipe. Both the base and the modified air box have been coupled to the engine, installed inside a vehicle. An experimental analysis has been carried out to measure the engine performance and the gasdynamic noise at the intake. Some comparisons have been then reported with the numerical results derived from a one-dimensional analysis of the whole engine.
Technical Paper

Steady-State and Transient Operation Simulation of a “Downsized” Turbocharged SI Engine

2007-04-16
2007-01-0381
The paper reports the research activity related to the development of a “downsized” turbocharged Spark-Ignition (SI) engine. Both experimental and theoretical analyses are carried out to characterize the performance of this engine architecture, and particularly to analyze the matching conditions with the turbocharger and the combustion process at wide-open-throttle conditions. To this aim, a quasi-dimensional model for the simulation of the burning process is included as an external user-defined routine in a commercial 1D simulation code (GT-Power®). The rate of heat release is computed through a two-zone model, based on a “fractal” representation of the turbulent flame front. A turbulence sub-model is included and it is properly tuned with respect to turbulence results computed by a 3D CFD code. A CAD procedure evaluating, at each crank-angle and flame radius, the intersections between the flame surface and the actual combustion chamber walls, is also presented.
Technical Paper

Combustion Noise Prediction in a Small Diesel Engine Finalized to the Optimization of the Fuel Injection Strategy

2009-05-19
2009-01-2077
The paper illustrates both numerical and experimental methodologies aiming to characterize performances and overall noise radiated from a light duty diesel engine. The main objective was the development of accurate models to be included within an optimization procedure, able to define an optimal injection strategy for a common rail engine. The injection strategy was selected to contemporary reduce the fuel consumption and the combustion noise. To this aim, an experimental investigation was firstly carried out measuring engine performances and noise emissions at different operating conditions. Contemporary, a one-dimensional (1D) simulation of the engine under investigation was performed, finalized to predict the in-cylinder pressure cycles and the overall engine performances. The 1D model was validated with reference to the measured data. In order to assess the combustion noise, an innovative study, mainly based on the decomposition of the in-cylinder pressure signal, was utilized.
Technical Paper

Prediction and Optimization of the Performances, Noxious Emissions and Radiated Noise of a Light Duty Common-Rail Diesel Engine

2009-09-13
2009-24-0011
The paper illustrates the interdisciplinary matching of different numerical and experimental techniques, aimed to characterize the performances, emissions and combustion noise radiated from a small-size DI diesel engine. The main objective is the development of proper models to be included within an optimization procedure, able to define an optimal injection strategy for a common-rail engine. The injection strategy is selected to simultaneously reduce the fuel consumption, the pollutant emissions and the combustion noise. The engine considered is a naturally aspirated, four strokes, two valves, single-cylinder engine (505 cm3 displacement), to be equipped with a prototype common-rail fuel injection system. A preliminary experimental investigation is carried out on the above engine, equipped, however, with a standard mechanical injection system (base engine).
Technical Paper

Pros and Cons of Using Different Numerical Techniques for Transmission Loss Evaluation of a Small Engine Muffler

2010-09-28
2010-32-0028
Automotive exhaust systems give a major contribution to the sound quality of a vehicle and must be properly designed in order to produce acceptable acoustic performances. Obviously, noise attenuation is strictly related to the used materials and to its internal geometry. This last influences the wave propagation and the gas-dynamic field. The purpose of this paper is to describe advantages and disadvantages of different numerical approaches in evaluating the acoustic performance in terms of attenuation versus frequency (Transmission Loss) of a commercial two perforated tube muffler under different conditions. At first, a one-dimensional analysis is performed through the 1D GTPower® code, solving the nonlinear flow equations which characterize the wave propagation phenomena. The muffler is characterized as a network of properly connected pipes and volumes starting from 3D CAD information. Then, two different 3D analyses are performed within the commercial STS VNOISE® code.
Technical Paper

An Acoustic Design Procedure for Intake Systems: 1D Analysis and Experimental Validation

2004-03-08
2004-01-0412
The paper details recent results concerning the design of a new intake system for a 1.4 liter displacement ELASIS-FIAT engine. A classical approach, based on theoretical one-dimensional characterization of the whole system, is presented. This approach, however, requires a relevant number of geometrical information which are usually unavailable in the first phase of the design process. For this reason, a statistical analysis on a number of existing devices was also carried out to the aim of providing such initial data as a function of prescribed levels of pressure losses and noise emission for the device. The methodology allows then to define a base configuration of the system, to start the 1D analyses. The base geometry is further refined taking into account the layout constraints and the presence of resonators for the reduction of the noise emission. Experimental data collected on a prototype of the designed system have confirmed the robustness of the whole design procedure.
Technical Paper

Improving Acoustic Performance of an Air Filter Box. TL Analysis and Device Optimization

2016-06-15
2016-01-1813
The characteristics of the intake system affect both engine power output and gas-dynamic noise emissions. The latter is particularly true in downsized VVA engines, where a less effective attenuation of the pressure waves is realized, due to the intake line de-throttling at part-load. For this engine architecture, a refined air-box design is hence requested. In this work, the Transmission Loss (TL) of the intake air-box of a commercial VVA engine is numerically computed through a 3D FEM approach. Results are compared with experimental data, showing a very good correlation. The validated model is then coupled to an external optimizer (ModeFRONTIERTM) to increase the TL parameter in a prefixed frequency range. The improvement of the acoustic attenuation is attained through a shape deformation of the inner structure of the base device, taking into account constraints related to the device installation inside the engine bay.
Technical Paper

Noise Prediction of a Multi-Cylinder Engine Prototype Using Multi-Body Dynamic Simulation

2011-09-11
2011-24-0216
In the paper a coupled Multi-Body and FEM-BEM methodology used to predict the noise radiated by a turbocharged 4-cylinder diesel engine prototype is described. A Multi-Body Dynamic Simulation (MBDS) of the engine has been carried out, simulating an engine speed sweep from 1500 to 4000 rpm, in order to determine the excitation force of the powertrain, and in particular to estimate the forces acting on the cylinder block. Thanks to the Multi-Body approach, the dynamics of the engine powertrain have been described taking into account both the effects of the burnt gas pressure during the combustion process and the inertia forces of the moving parts. Moreover to assess the real engine operating behaviour, both the crank and the block have been considered as flexible bodies.
Technical Paper

Analysis and Design of an Intake Filter Box for a Downsized VVA Engine

2014-04-01
2014-01-1693
The present paper reports 1D and 3D CFD analyses of the air-filter box of a turbocharged VVA engine, aiming to predict and improve the gas-dynamic noise emissions through a partial re-design of the device. First of all, the gas-dynamic noise at the intake mouth is measured during a dedicated experimental campaign. The developed 1D and 3D models are then validated at full load operation, based on experimental data. In particular, 1D model provides a preliminary evaluation of the radiated noise and simultaneously gives reliable boundary conditions for the unsteady 3D CFD simulations. The latter indeed allow to better take into account the geometrical details of the air-filter and guarantee a more accurate gas-dynamic noise prediction. 3D CFD analyses put in evidence that sound emission mainly occur within a frequency range of 350 to 450 Hz.
X