Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Directional Dynamics of a Partly-Filled Tank Vehicle Under Braking and Steering

2000-12-04
2000-01-3477
Dynamic behavior of a partly-filled liquid cargo vehicle subject to simultaneous application of cornering and braking maneuvers is investigated through computer simulation. A three-dimensional quasi-dynamic model of a partly-filled tank of circular cross-section is developed and integrated into a comprehensive three-dimensional model of an articulated vehicle to study its directional response under varying steering and braking inputs, fill volumes and road surface friction. The liquid load movement encountered under combined steering and braking is expressed in terms of variations in the instantaneous c.g. coordinates and mass moments of inertia of the liquid bulk, assuming negligible influence of fundamental slosh frequency and viscous effects.
Technical Paper

Optimal Tank Geometry to Enhance Static Roll Stability of Partially Filled Tank Vehicles

1999-11-15
1999-01-3730
A generic tank cross-section is formulated to describe the geometry of currently used tanks in transportation of fuel oils and bulk liquids, and to explore optimal tank geometry for enhancement of roll stability limit of tank vehicle combinations. The tank periphery, composed of 8 circular arcs symmetric about the vertical axis, allows more design flexibility in view of the roll stability limits than the conventional tank shapes. A shape optimization problem is formulated to minimize the overturning moment imposed on the vehicle due to c.g. height of the liquid load, and the lateral and vertical movement of the liquid bulk within the partly filled tank. Different optimal tank cross-sections are proposed corresponding to varying fill conditions, while the total cross-sectional area, overall height and overall width are constrained to specified values.
Technical Paper

Vehicle-Trailer Handling Dynamics and Stability Control ─ an Engineering Review

2007-04-16
2007-01-0822
This paper presented an engineering review on the state of the art in the research and development of vehicle-trailer handling dynamics and stability controls. The issues and potential technical solutions were identified in various areas and the unique characteristics of vehicle-trailer as a combined system were investigated and compared to a single-unit vehicle system. Many approaches taken in modeling, analysis, simulation and testing were examined, and various control methods, actuations and control implementations were evaluated. As a result of this study, further research areas were also identified. While it is important to maintain the stability of a trailer, thus the stability of a vehicle-trailer combination, it remains one of the major challenges in designing an appropriate control law to balance effectively the requirements between stability and handling performance, which often set conflicting objectives.
X