Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Hardware-In-the-Loop (HIL) Modeling and Simulation for Diesel Aftertreatment Controls Devlopment

2009-10-06
2009-01-2928
This paper addresses Hardware-In-the-Loop modeling and simulation for Diesel aftertreatment controls system development. Lean NOx Trap (LNT) based aftertreatment system is an efficient way to reduce NOx emission from diesel engines. From control system perspective, the main challenge in aftertreatment system is to predict temperature at various locations and estimate the stored NOx in LNT. Accurate estimation of temperatures and NOx stored in the LNT will result in an efficient system control with less fuel penalty while still maintaining the emission requirements. The optimization of the controls will prolong the lifespan of the system by avoiding overheating the catalysts, and slow the progressive process of component aging. Under real world conditions, it is quite difficult and costly to test the performance of a such complex controller by using only vehicle tests and engine cells.
Technical Paper

Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control

2006-02-14
2006-01-1963
This paper focuses on modeling of torque-biasing devices of a four-wheel-drive system used for improving vehicle stability and handling performance. The proposed driveline system is based on nominal front-wheel-drive operation with on-demand transfer of torque to the rear. The torque biasing components of the system are an electronically controlled center coupler and a rear electronically controlled limited slip differential. Kinematic modeling of the torque biasing devices is introduced including stage transitions during the locking stage and the unlocking/slipping stage. Analytical proofs of how torque biasing could be used to influence vehicle yaw dynamics are also included in the paper. A yaw control methodology utilizing the biasing devices is proposed. Finally, co-simulation results with Matlab®/Simulink® and CarSim® show the effectiveness of the torque biasing system in achieving yaw stability control.
Technical Paper

NVH Development of Digital Hydraulics System for Off-Highway Vehicle Applications

2015-09-29
2015-01-2856
Fuel economy of both highway and off-highway vehicles is a major driver for new technology development. One of the technologies to meet this driver is a digital valve based hydraulic system. Digital Hydraulics technology employs high speed on/off valves to achieve the same functionality with no throttling loss. Furthermore, by forming various architecture by using digital valves, it provides the system level capability and flexibility for energy saving and productivity improvement. There are many challenges in fully realizing the full efficiency benefits of the system in an actual application. These challenges include packaging, durability, a change in the operator's perception of the vehicle as well as hydraulic system performances during operation. One significant issue is the noise, vibration and harshness (NVH) of the system. Due to the nature of the digital valve operation, there are severe transient dynamics in the fluid system.
X