Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

Influence of Laser-Induced Ignition on Spray-Guided Combustion - Experimental Results and Numerical Simulation of Ignition Processes

2009-11-02
2009-01-2623
In this work, the potential of laser-induced ignition to improve combustion initiation and heat release in a direct-injection engine is investigated by a combined experimental and numerical investigation. Laser ignition is studied in fuel/air mixtures with homogeneous equivalence ratio fields. The results provide knowledge about minimum ignition energies and the ignition limits of laser-induced ignition. Furthermore, in mixtures with nominally identical conditions, statistical variations of the ignition success are observed experimentally. These variations can be explained, based on numerical simulations, by fluctuations in the strain rate in the turbulent in-cylinder flow. Additionally, laser ignition in engines with a spray-guided combustion mode, with strongly inhomogeneous fuel/air mixtures, was investigated.
Technical Paper

3D-Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Complex Chemistry

2004-03-08
2004-01-0106
A progress variable approach for the 3D-CFD simulation of DI-Diesel combustion is introduced. Considering the Diesel-typical combustion phases of auto-ignition, premixed and diffusion combustion, for each phase, a limited number of characteristic progress variables is defined. By spatial-temporal balancing of these progress variables, the combustion process is described. Embarking on this concept, it is possible to simulate the reaction processes with detailed chemistry schemes. The combustion model is coupled with a mesh-independent Eulerian-spray model in combination with orifice resolving meshes. The comparison between experiment and simulation for various Diesel engines shows good agreement for pressure traces, heat releases and flame structures.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

A Detailed Two-Dimensional Numerical Study of Spark Ignition Including Ionization

2002-03-04
2002-01-1110
In this work, the spark-ignition (SI) of a methane/air mixture contained in a constant-volume chamber is investigated by numerical simulations. A cylinder-shaped vessel filled with a methane/air mixture containing two electrodes is used as simulation model. The impact of an electrical discharge at the electrodes on the surrounding gas is simulated, with detailed treatment of the ignition process involvig chemical kinetics, transport phenomena in the gas-phase and electrodynamical modeling of the interaction between spark and fuel/air mixture. For the calculations, a 2D-code to simulate the early stages of flame development, shortly after the breakdown discharge, has been developed. Computational results are shown for ignition of a methane air-mixture.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
X