Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

Development of Hydrogen Fuel Cell Bus Technology for Urban Transport in India

2019-01-09
2019-26-0092
Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology is considered for automotive applications due to rapid start up, energy efficiency, high power density and less maintenance. In line with National Hydrogen Energy Roadmap of Govt. of India that aims to develop and demonstrate hydrogen powered IC engine and fuel cell based vehicle. TATA Motors Ltd. has designed, developed and successfully demonstrated “Low Floor Hydrogen Fuel Cell Bus” which comprises of integrated fuel cell power system, hydrogen storage and dispensing system. The fuel cell power system, converts the stored chemical energy in the hydrogen to DC electrical energy. The power generated is regulated and used for powering the traction motor. The development of fuel cell bus consists of five stages: Powertrain sizing as per vehicle performance targets, fuel cell stack selection and balance of plant design and development, bus integration, hydrogen refueling infrastructure creation and testing of fuel cell bus.
X