Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study of Quantitative Impact on Emissions of High Proportion RME-Based Biodiesel Blends

2007-01-23
2007-01-0072
Previous work of the authors' group has shown that biodiesel fuels as a replacement for conventional diesel fuel in engine combustion can reduce PM level dramatically while lowering some other regulated emissions as well. It has shown that these fuels have the potential to increase the overall engine performance due to their lower sulphur and/or aromatics content compared with standard diesel fuels. This paper presents a study on a single cylinder naturally aspirated direct injection (DI) diesel engine, equipped with a pump-line-nozzle injection system, operating with varied biodiesel fuel blends (0%, 25%, and 50% of RME by volume) with ultra low sulphur diesel fuel (ULSD). The detailed analysis of the measurement data shows that the ignition delay and exhaust emissions are affected by the proportion of biodiesel due to the effect of different physical and chemical properties of the two fuels.
Technical Paper

Effect of Intake Valves Timings on In-Cylinder Charge Characteristics in a DI Engine Cylinder with Negative Valve Overlapping

2008-04-14
2008-01-1347
This paper presents a computational investigation of the in-cylinder charge characteristics within a motored 4-valve direct injection HCCI engine cylinder with applied negative valve overlapping. Non-typical intake valve strategy was investigated; whereby the pair of intake valves was assumed to follow the same low-lift short-duration valve-lift profile but actuated at different timings. The phase of intake-valve-opening relative to that of exhaust-valve-closing was optimized in terms of pumping losses. The flow fields generated with such an intake valve strategy were compared to those produced in the same engine cylinder but with typical early and late intake-valve-timing. The computational results of such an approach showed modifications in the in-cylinder swirl and tumble motions during the intake and compression strokes.
Technical Paper

Engine Performance and Emissions from Dual Fuelled Engine with In-Cylinder Injected Diesel Fuels and In-Port Injected Bioethanol

2009-06-15
2009-01-1853
Biofuels development and specification are currently driven by the engine (mainly gasoline- and diesel-type) technology, existing fossil fuel specification and availability of feedstock. The ability to use biofuels with conventional fuels without jeopardising the standard fuel specifications is a very effective means for the implementation of these fuels. In this work the effect of dual fuelling with in-cylinder injected ULSD fuel or synthetic second generation biofuels (a Gas-To-Liquid GTL fuel as a surrogate of these biofuels as its composition, specifications and production process are very similar to second generation biofuels) and with inlet port injected bioethanol on the engine performance and emissions were investigated. The introduction of anhydrous bioethanol improved the NOx and smoke emissions, but increased total hydrocarbons and carbon monoxide.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
X