Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Blockage Ratio and Reynolds Number Effects on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0956
For flows around a tire rotating over a ground plane, the Reynolds number is probably the most important parameter influencing the transition mechanism leading to flow separation from the tire surface, as it determines the viscous response of the boundary layer in the vortex-wall interaction. The present work investigates the effects of Reynolds number on an isolated tire model using a commercial Computational Fluid Dynamics (CFD) code. It validates the baseline simulation for this purpose against the Particle Image Velocimetry (PIV) data from Stanford University got using a Toyota Formula 1 race car tire model. Time-resolved velocity fields and vortex structures from the PIV data are used to correlate local and global flow phenomena to identify unsteady boundary-layer separation and the subsequent flow structures. The study will highlight the pre to post critical flow regimes where the aero coefficients and vortex structure will be studied.
Technical Paper

Effects of Domain Boundary Conditions on the CFD Prediction of Flow over an Isolated Tire Model

2021-04-06
2021-01-0961
Tire modeling has been an area of major research in automotive industries as the tires cause approximately 25% of vehicle drag. With the fast-paced growth of computational resources, Computational Fluid Dynamics (CFD) has evolved as an effective tool for aerodynamic design and development in the automotive industry. One of the main challenges in the simulation of the aerodynamics of tires is the lack of a detailed and accurate experimental setup with which to correlate. In this study, the focus is on the prediction of the aerodynamics associated with an isolated rotating Formula 1 tire and brake assembly. Literature has indicated differing mechanisms explaining the dominant features such as the wake structures and unsteadiness. Limited work has been published on the aerodynamics of a realistic tire geometry with specific emphasis on advanced turbulence closures such as the Detached Eddy Simulation (DES).
Technical Paper

Tuning of Turbulence Model Closure Coefficients Using an Explainability Based Machine Learning Algorithm

2023-04-11
2023-01-0562
This article discusses an application of Machine Learning (ML) tools to improve the prediction accuracy of Computational Fluid Dynamics (CFD) for external aerodynamic workflows. The Reynolds Averaged Navier-Stokes (RANS) approach to CFD has proved to be one of the most popular simulation methodologies due to its quick turnaround times and acceptable level of accuracy for most applications. However, in many cases the accuracy for the RANS models can prove to be suboptimal that can be significantly improved with model closure coefficient tuning. During the original turbulence model creation, these closure coefficients were chosen by somewhat ad hoc methods using simple canonical flows that do not transfer well to flows involving more complex objects, like the automotive bodies used in this work.
X