Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Determination of Range of Fuel Premixing Ratio in Gasoline/Butanol-Diesel Dual-Fuel Engine for Lower Exhaust Emissions and Higher Efficiency

2020-04-14
2020-01-1128
In this study, the influence of fuel premixing ratio (PMR) on the performance, combustion, and emission characteristics of dual-fuel operation in the compression ignition (CI) engine have been investigated. For dual fuel operation in CI-engine, two fuels of different reactivity are utilized in the same combustion cycle. In this study, low reactivity fuels (gasoline/butanol) is injected into the intake manifold, and high reactivity fuel (diesel) is directly injected into the cylinder. To operate the conventional CI engine in dual-fuel mode, the intake manifold of the engine was modified and a solenoid based port fuel injector was installed. A separate port fuel injector controller was used for injecting the gasoline or butanol. Suitable instrumentation was used to measure in-cylinder pressure and exhaust gas emissions. Experiments were performed by maintaining the constant fuel energy at different fuel PMR for different engine loads at constant engine speed.
Journal Article

Effect of Start of Injection on the Particulate Emission from Methanol Fuelled HCCI Engine

2011-12-06
2011-01-2408
New combustion concepts developed in internal combustion engines such as homogeneous charge compression ignition (HCCI) have attracted serious attention due to the possibilities to simultaneously achieve higher efficiency and lower emissions, which will impact the environment positively. The HCCI combustion concept has potential of ultra-low NOX and particulate matter (PM) emission in comparison to a conventional gasoline or a diesel engine. Environmental Legislation Agencies are becoming increasingly concerned with particulate emissions from engines because the health and environmental effects of particulates emitted are now known and can be measured by sophisticated instruments. Particulate emissions from HCCI engines have been usually considered negligible, and the measurement of mass emission of PM from HCCI combustion systems shows their negligible contribution to PM mass. However some recent studies suggest that PM emissions from HCCI engines cannot be neglected.
Journal Article

Particulate Morphology and Toxicity of an Alcohol Fuelled HCCI Engine

2014-04-15
2014-01-9076
Homogeneous charge compression ignition (HCCI) engines are attracting attention as next-generation internal combustion engines mainly because of very low NOx and PM emission potential and excellent thermal efficiency. Particulate emissions from HCCI engines have been usually considered negligible however recent studies suggest that PM number emissions from HCCI engines cannot be neglected. This study is therefore conducted on a modified four cylinder diesel engine to investigate this aspect of HCCI technology. One cylinder of the engine is modified to operate in HCCI mode for the experiments and port fuel injection technique is used for preparing homogenous charge in this cylinder. Experiments are conducted at 1200 and 2400 rpm engine speeds using gasoline, ethanol, methanol and butanol fuels. A partial flow dilution tunnel was employed to measure the mass of the particulates emitted on a pre-conditioned filter paper.
Technical Paper

Experimental Investigation of Cycle-by-Cycle Variations in CAI/HCCI Combustion of Gasoline and Methanol Fuelled Engine

2009-04-20
2009-01-1345
The development of vehicles continues to be determined by increasingly stringent emissions standards including CO2 emissions and fuel consumption. To fulfill the simultaneous emission requirements for near zero pollutant and low CO2 levels, which are the challenges of future powertrains, many research studies are currently being carried out world over on new engine combustion process, such as Controlled Auto Ignition (CAI) for gasoline engines and Homogeneous Charge Compression Ignition (HCCI) for diesel engines. In HCCI combustion engine, ignition timing and combustion rates are dominated by physical and chemical properties of fuel/air/residual gas mixtures, boundary conditions including ambient temperature, pressure, and humidity and engine operating conditions such as load, speed etc.
Technical Paper

Numerical Investigation on the Effect of Fuel Injection Timing on Soot Particle Size and Number Characteristics of Diesel Engine

2022-08-30
2022-01-1053
Diesel engines are lucrative in terms of high thermal efficiency and low specific fuel consumption. The major drawbacks of these engines are high NOx and particulate matter (PM) emissions due to heterogeneous combustion. In the current emissions norms (BS-VI), a limit for particle number concentration is also introduced. There are few numerical studies investigating the soot particle size and number characteristics at different engine operating conditions. In this work, a parametric numerical study is conducted to investigate the effect of engine operating parameters on PM characteristics such as number density, size, and volume fraction. Simulations were performed using the Reynolds Averaged Navier Stokes equation with renormalization group K-ε turbulence model available in ANSYS FORTE CFD software.
Technical Paper

Environmental and Cancer Risk Potential Assessment of Unregulated Emissions from Methanol-Diesel Dual Fuel RCCI Engine

2024-01-16
2024-26-0152
The influence of engine load and fuel premixing ratio (PMR) on unregulated emission from a methanol-diesel dual-fuel RCCI (MD-RCCI) engine is examined in this study. The study focuses on assessing the adverse effects of unregulated emissions (saturated HC, unsaturated HC, carbonyl compounds, aromatic hydrocarbon, NH3, and SO2) on the health of human beings and the environment. To quantify the effect on the environment, the greenhouse gas potential (GWPs), Eutrophication potential (EP), Acidification potential (AP), and Ozone forming potential (OFP) are calculated and presented. The cancer risk potential (CRP) of the carbonyl compounds (HCHO and CH3CHO) is calculated and presented to see the effect on human health. The results demonstrate that at lower engine load, with an increase in PMR, the OFP and CRP for MD-RCCI operation increase significantly, whereas AP, EP, and GWPs decrease. Additionally, with a rise in the load at a constant PMR, the AP, EP and OFP decrease significantly.
X