Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Quantitative Spatially Resolved Measurements of Total Radiation in High-Pressure Spray Flames

2014-04-01
2014-01-1252
Quantitative measurements of the total radiative heat transfer from high-pressure diesel spray flames under a range of conditions will enable engine modelers to more accurately understand and predict the effects of advanced combustion strategies on thermal loads and efficiencies. Moreover, the coupling of radiation heat transfer to soot formation processes and its impact on the temperature field and gaseous combustion pollutants is also of great interest. For example, it has been shown that reduced soot formation in diesel engines can result in higher flame temperatures (due to less radiative cooling) leading to greater NOx emissions.
X