Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spray and Failure Analysis of Porous Injection Nozzles

2012-09-10
2012-01-1654
To improve the mixing of fuel and air in the combustion chamber of current diesel engines, research is carried out regarding injectors with a porous nozzle tip, replacing conventional nozzles with a limited number of holes. Preliminary tests with porous injectors showed that further research concerning spray distribution was necessary due to non-optimal spray shapes and low fuel velocities. Therefore, spray shapes and fuel velocities of porous injectors were examined at atmospheric pressures. These examinations show that the spray shapes can be adjusted by alternating the geometries. Geometrical influences have been studied and compared to conventional injectors, showing that the fuel velocity of the porous injectors has decreased with approximately a factor of 10. Subsequently, research concerning the lifetime of porous nozzles was necessary due to premature failure.
Technical Paper

Spray Analysis of the PFAMEN Injector

2013-09-08
2013-24-0036
In an earlier study, a novel type of diesel fuel injector was proposed. This prototype injects fuel via porous (sintered) micro pores instead of via the conventional 6-8 holes. The micro pores are typically 10-50 micrometer in diameter, versus 120-200 micrometer in the conventional case. The expected advantages of the so-called Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN) injector are lower soot- and CO2 emissions. However, from previous in-house measurements, it has been concluded that the emissions of the porous injector are still not satisfactory. Roughly, this may have multiple reasons. The first one is that the spray distribution is not good enough, the second one is that the droplet sizing is too big due to the lack of droplet breakup. Furthermore air entrainment into the fuel jets might be insufficient. All reasons lead to fuel rich zones and associated soot formation.
X