Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Design of Commercial Vehicle Cooling Packages

2008-04-14
2008-01-0264
Optimization of vehicle engine cooling package with requisite heat rejection capacity plays a key role in achieving most fuel economy and also in meeting the stringent noise norms. A set of design and operating features from existing vehicle engine cooling systems is reviewed and evaluated for their potential to provide optimized engine cooling. The features reviewed states significant potential in engine performance but these are balanced by satisfying required engine cooling requirement. Sets of trials are carried out on said vehicle with dissimilar features of cooling packages and the results are evaluated. Fuel economy trials in performance mode are carried out on vehicle with well thought-out cooling package for healthier comparison.
Technical Paper

Evaluation of Potential Benefit of 6 × 2 Over 6 × 4 Drive Mode to Improve the Fuel Economy on Heavy Commercial Vehicle

2009-04-20
2009-01-1359
Reduction in the drivetrain losses of a vehicle is one of the important contributing factors to amplify the fuel economy of vehicle, particularly in heavy commercial vehicle. The conversion of 6 × 4 drive vehicle into 6 × 2 drive has a benefit of improving the fuel economy of a vehicle by reducing the drivetrain losses occurring in the second rear axle. It was cultured by calculation that in 6 × 2 drive the tractive force available at the wheels, of heavy commercial vehicle with GVW of 44 tons and above, will be much higher than the frictional force transmission capacity of tires, when the engine is producing peak torque on the driving duty cycle like going on steep gradient road. In such situations the tires will start to slip and may result in deteriorating the fuel economy and excessive tire wear. On the other side the flat road driving duty cycle in 6 × 2 drive will give better fuel economy than 6 × 4 drive.
Technical Paper

Methodology for Measurement of Inherent Driveline Frictional Force for a Vehicle in Coasting Mode

2009-04-20
2009-01-0416
Today, with the introduction of Euro-III engines it is possible to achieve almost zero fuel consumption in coasting mode. This means more the distance covered in coasting mode better will be the overall fuel economy of the vehicle. In turn, distance covered by the vehicle in coasting mode depends on the driveline frictional losses i.e. for a particular moving inertia of a vehicle higher the inherent driveline frictional loss lesser will be the distance negotiated by the vehicle. The proposed methodology has been established to determine this inherent frictional force component acting all across the driveline while the vehicle is run in coasting mode under no-load condition. The application of this methodology is limited to vehicles with manual transmission.
Technical Paper

Drive Cycle for Commercial Vehicles for Selection of Power Train to Get Optimum Fuel Efficiency

2009-10-06
2009-01-2886
A drive cycle is a representation of standardized driving pattern. Drive cycle is typically represented as a vehicle speed, gradient Vs time developed to represent the driving pattern which is independent of vehicle configuration. A drive cycle has been developed for commercial vehicle based on real life data. Analysis was done on the representative data measured and recorded by real driving behaviors for different driving conditions (City, and highway), along with engine part load data and vehicle parameters like Gross Vehicle Weight (GVW), gear box ratios, rear axle ratio, tire size. The above set of parameters are simulated and validated on software. Estimation of fuel consumption (based on developed drive cycle) using validated software matches real time fuel consumption. This would eventually lead us to choose power train to get better output in terms of fuel efficiency.
Technical Paper

Development of an optimized cooling system for a light duty Pickup truck

2016-09-27
2016-01-8074
With the advent of most advanced diesel engines the demand for upgraded engine cooling modules capable of handling more heat rejection in a smaller space is surging. Moreover, the variance in the operating conditions, i.e., the simultaneous cooling demands for peak load as well as partial load in different ambient conditions of the vehicle operation, broadens the scope of development of a cooling system. Also, the cooling system needs to be configured judiciously so as to cater effective cooling at peak loads and efficient cooling at partial loads. This research paper deals with a cooling system developed using modularity approach in order to have a control over tuning of subsystems for varying operating conditions and also to achieve the performance targets with a compact design adhering to packaging constraints. Kuli simulation of different designed configurations were carried out for identification of best concept.
Technical Paper

Effect of Steering System Compliance on Steered Axle Tire Wear

2012-09-24
2012-01-1909
Subject paper focuses primarily on non uniform tire wear problem of front steered wheels in a pickup model. Cause and effect analysis complemented with field vehicle investigations helped to identify some of the critical design areas. Investigation revealed that steering geometry of the vehicle is undergoing huge variations in dynamic condition as compared to initial static setting. Factors contributing to this behavior are identified and subsequently worked upon followed by a detailed simulation study in order to reproduce the field failures on test vehicles. Similar evaluation with modified steering design package is conducted and results are compared for assessing the improvements achieved. In usual practice, it is considered enough if Steering Geometry parameters are set in static condition and ensured to lie within design specifications.
Technical Paper

Optimization of Commercial Vehicle Cooling Package for Improvement of Vehicle Fuel Economy

2015-04-14
2015-01-1349
In a heavy commercial vehicle, the engine cooling package is designed by considering peak heat load on the vehicle cooling system from an engine end. In cooling systems, the major unit that consumes most power from the engine is the engine cooling fan. It was seen from the vehicle measured duty cycle data, for most of the time engine operates at part load condition. Regardless of demand from the engine cooling system, engine fan was operating continuously at equivalent speed of the engine. This results in continuous consumption of productive engine power from the fan end ultimately affecting vehicle fuel economy. The present study shows that low idle speed viscous fan has the potential to meet stringent engine cooling performance requirements and consumes less engine power throughout an actual vehicle duty cycle. Experiments were conducted on test vehicle with different fan speeds.
X