Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Numerical Simulation of a High Current Density PEM Fuel Cell

2020-09-27
2020-24-0016
The ever-increasing quest for sustainable mobility is pushing the automotive sector towards electric-based technologies, allowing the reduction of localized emission sources in highly populated urban areas. Among the many possible solutions, Proton Exchange Membrane Fuel Cells (PEMFC) have the potential to de-carbonise the automotive sector without the range anxiety of present and future batteries. The interaction between physical and chemical processes in PEMFC is crucial to their maximum attainable efficiency, albeit the complexity of such interplay still limits a complete understanding of the governing processes. In this paper a canonical PEMFC from literature is simulated using 3D-CFD, and results are compared against experiments. A Eulerian multi-phase/multi-physics non-isothermal framework is used to account for both fluid (gas channels, porous gas diffusion layers) and solid (bi-polar plates, membrane), as well as for electrochemical and sorption reactions.
Journal Article

Knock Tendency Prediction in a High Performance Engine Using LES and Tabulated Chemistry

2013-04-08
2013-01-1082
The paper reports the application of a look-up table approach within a LES combustion modelling framework for the prediction of knock limit in a highly downsized turbocharged DISI engine. During experimental investigations at the engine test bed, high cycle-to-cycle variability was detected even for relatively stable peak power / full load operations of the engine, where knock onset severely limited the overall engine performance. In order to overcome the excessive computational cost of a direct chemical solution within a LES framework, the use of look-up tables for auto-ignition modelling perfectly fits with the strict mesh requirements of a LES simulation, with an acceptable approximation of the actual chemical kinetics. The model here presented is a totally stand-alone tool for autoignition analysis integrated with look-up table reading from detailed chemical kinetic schemes for gasoline.
Technical Paper

Numerical Comparison of the Performance of Four Cooling Circuit Designs for Proton Exchange Membrane Fuel Cells (PEMFCs)

2022-03-29
2022-01-0685
Polymer Electrolyte Membrane Fuel Cell (PEMFC) are among the most promising technologies as energy conversion devices for the transportation sector due to their potential to eliminate, or greatly reduce, the production of greenhouse gases. One of the current issues with this type of technology is thermal management, which is a key aspect in the design and optimization of PEMFC, whose main aim is an effective and balanced heat removal, thus avoiding thermal gradients leading to a cell lifetime reduction as well as a decrease in the output performance. In addition, a uniform temperature distribution contributes to the achievement of a uniform current density, as it affects the rate of the electrochemical reaction. This is made even more challenging due to the low operating temperature (80°C), reducing the temperature difference for heat dissipation, and leaving a critical role to the design and optimization of the cooling circuit design.
Technical Paper

Numerical Simulation of Advanced Bipolar Plates Materials for Hydrogen-Fueled PEM Fuel Cell

2022-03-29
2022-01-0683
Hydrogen-fueled Proton Exchange Membrane Fuel Cells (PEMFC) are considered one of the most promising technologies for a fully sustainable power generation in the transportation sector, thanks to the direct conversion of chemical-electrical energy, the absence of harmful emissions, the optimal power density, and the allowable long-distance driving range. A current technological issue preventing their large-scale industrialization is the thermal management of PEMFC stacks, due to the absence of the heat removal action operated by exhaust gases in internal combustion engines, the low-temperature generated heat and the limited exchange areas in mobile applications. A relevant role in heat dissipation is played by bipolar plates, being the components with the largest volume occupation and greatly contributing to the PEMFC weight and cost.
Technical Paper

CFD Simulations and Potential of Nanofluids for PEM Fuel Cells Cooling

2023-08-28
2023-24-0144
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase.
Technical Paper

A MATLAB/Simulink Model of a PEM Fuel Cell System Including Ageing Phenomenon

2023-08-28
2023-24-0148
This paper presents a numerical model of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) system reproducing an automotive-type powertrain. The 0D model is developed in MATLAB/Simulink environment, and it incorporates all the main auxiliary components (air and hydrogen supply line, cooling circuit) as well as the PEMFC stack unit. The model includes an ageing model to estimate the PEMFC stack degradation over time, resulting in progressive efficiency loss as well as in increased auxiliary power and thermal dissipation demand. The presented model enables the estimation of both PEMFC duration and of the time-varying request of heat rejection, facilitating the selection of auxiliaries to optimize the lifelong performance. The model constitutes the backbone for the design and optimization of PEMFC systems for automotive applications, and the integration with a degradation model provides a comprehensive research tool to estimate the long-term performance and lifetime of PEMFC system.
Journal Article

A Methodology to Design the Flow Field of PEM Fuel Cells

2023-04-11
2023-01-0495
Proton Exchange Fuel Cells (PEMFCs) are considered one of the most prominent technologies to decarbonize the transportation sector, with emphasis on long-haul/long-range trucks, off-highway, maritime and railway. The flow field of reactants is dictated by the layout of machined channels in the bipolar plates, and several established designs (e.g., parallel channels, single/multi-pass serpentine) coexist both in research and industry. In this context, the flow behavior at cathode embodies multiple complexities, namely an accurate control of the inlet/outlet humidity for optimal membrane hydration, pressure losses, water removal at high current density, and the limitation of laminar regime. However, a robust methodology is missing to compare and quantify such aspects among the candidate designs, resulting in a variety of configurations in use with no justification of the specific choice.
X