Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

High Performance Motion Control Without a Foundation For Fuselage Fastening Automation

2016-09-27
2016-01-2103
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
Technical Paper

Drivmatic® Automatic Fastening System with Single Robot Positioner

2017-09-19
2017-01-2078
The focus of this technical paper is a unique automatic fastening system configuration for loading, positioning & unloading pre-tacked door assemblies within a static C-Frame Drivmatic® fastening machine using an off-the-shelf, high accuracy Fanuc robot. In 2011, PMC was awarded a significant contract for supplying commercial OEM aircraft doors and recognized automation was the most feasible approach for fastening each door assembly. At the time of contract award, PMC was an established aero structure supplier with significant automation capability for machining high tolerance parts & assemblies and manual fastening resources to support many different OEM programs however PMC did not have automatic fastening experience or capability. In support of this new Tier-2 contract, PMC reached out to Gemcor to propose a collaborative robot solution for automatically fastening 5 different door assemblies that were historically fastened using a semi-automatic configuration.
X