Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Technical Paper

Impact of Mixture Inhomogeneity and Ignition Location on Early Flame Kernel Evolution in a Direct-Injection Hydrogen-Fueled Heavy-Duty Optical Engine

2023-09-29
2023-32-0044
An optically accessible hydrogen-fueled, heavy-duty engine was used to investigate the impact of mixture formation on the early flame kernel propagation and the resulting combustion cyclic variability. Direct injection from a centrally mounted medium-pressure outward-opening hollow-cone injector created a fuel- air mixture with a global equivalence ratio of 0.33. The engine was operated at 1200 RPM with dry air at an intake pressure and temperature of 1.0 bar and 305 K, respectively. The charge was ignited at three different locations using focused-laser ignition to allow for undisturbed flame evolution, and the fuel injection timing and injection pressure were varied to influence the mixture inhomogeneity.
X