Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of AC Control in Hybrid Electric Vehicles during Urban Drive Conditions

2017-01-10
2017-26-0087
Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
Technical Paper

Cost Effective Techniques to Maximize Benefits of Entry Segment Full Hybrid Electric Vehicle without Engine Downsizing

2015-01-14
2015-26-0113
Hybridization with engine downsizing is a regular trend to achieve fuel economy benefits. However this leads to a development of new downsized engine which is very costly and time consuming process, also engine downsizing demands for expensive higher power electric system to meet performance targets. Various techniques like gear ratio optimization, reducing number of gears, battery size and control functionalities optimization have been evaluated for maximum fuel economy keeping system cost very low and improving vehicle performance. With optimized gear ratios and reduced number of gears for parallel hybrid, it is possible to operate the engine in the best efficiency zones without downsizing. Motor is selected based on power to weight ratio, gradient requirements, improved acceleration performance and top speed requirement of vehicle in EV mode.
Technical Paper

Comparative Analysis of P2 and P3 HEV Architectures for Different Vehicle Segments

2024-01-16
2024-26-0284
Climate change due to global warming calls for more fuel-efficient technologies. Parallel Full hybrids are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Different parallel hybrid electric vehicle (HEV) architectures such as P0, P1, P2, P3 and P4 are adopted based on different parameters like fuel economy, drivability, performance, packaging, comfort and total cost of ownership of the vehicle. It is a great challenge to select right hybrid architecture for different vehicle segments. This paper compares P2 and P3 HEV with AMT transmission to evaluate most optimized architecture based on vehicle segment. Vehicles selected for study are from popular vehicle segments in India with AMT transmission i.e. Entry segment hatch and Compact SUV. HEV P2 and P3 architectures are simulated and studied with different vehicle segments for fuel economy, performance, drivability and TCO.
X