Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

A Study of Combustion Phasing Control and Emissions in Jet Controlled Compression Ignition Engines

2014-10-13
2014-01-2671
To directly control the premixed combustion phasing, a novel method called Jet Controlled Compression Ignition (JCCI) is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine at 3000 r/min without EGR. Numerical model was validated by pressure and heat release rate curves at a fixed spark timing. The simulation results showed that the reacting active radical species with high temperature issued from ignition chamber played an important role on the onset of combustion in JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from ignition chamber. Consequently, the experiments of spark timing sweep were conducted to verify the above deduction. The results showed a good linear relationship between spark timing and CA10 and CA50, which validated the ability for direct combustion phasing control in diesel premixed combustion.
X