Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influence of Weld Lines on the Mechanical Properties of Talc Filled Polypropylene

2020-04-14
2020-01-1306
Weld lines can significantly reduce ultimate tensile strength (UTS) and fracture strain of talc filled polypropylene (PP). In this paper, two different injection molding tests were completed. First, an injection mold with triangular inserts was built to study the influence of meeting angles on material properties at the weld line region. Tensile samples were cut at different locations along the weld line on the injection molded plaques. The test results showed that both UTS and fracture strain increase when the sample locations are away from the insert. This trend is attributed to different meeting angles. Second, standard ISO tensile bars with and without weld line were injection molded to identify the size of the weld line affected zone. A FEA model was built in ABAQUS, where the tensile sample was divided into two different regions, the solid region and the weld line affected region.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Study the Relationship between CP Specimen Width and the Stress Intensity Factor Value around Nugget

2015-04-14
2015-01-0553
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
X