Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Energy, Exergy and Emission Performance Analysis of Air-Film Blade Cooled Turbo Prop Turbine for Heavy Duty Cargo Aircrafts

2019-03-19
2019-01-1389
In the present scenario, when the non-conventional energy resources are still under development stage for their full potential as a source of energy for our fast growing population, gas turbines are one of the most promising power generation technologies. The gas turbine based power utilities are also gaining acceptance across globe, because of increase in extraction of natural gas. Further reduction in the price of natural gas would also result in the number of gas turbine units installed across globe and thus it is important to carry out the environmental analysis of gas turbine based utilities. The gas turbines are employed in power generation in industries, aircrafts and marine propulsion units. The present exercise carries out thermodynamic performance analysis i.e. energy, exergy and emission performance analysis of an air-craft gas turbine. The gas turbine blades of present cycle are assumed to be cooled by air-film blade cooling technique.
Technical Paper

Thermodynamic and Emission Analysis of Basic and Intercooled Gas Turbine Cycles

2015-09-15
2015-01-2426
In comparison to other thermal power cycles, gas turbine based energy conversion cycles exhibit superior thermodynamic performance as well as reduced emission. Gas turbine manufacturers and research & development (R&D) organizations are working on modification in basic gas turbine (BGT) cycle, which are intended to improve the basic gas turbine cycle thermodynamic performance and reduce emissions. The present work reports a comparison of thermodynamic performance, NOx and CO emission for basic and intercooled gas turbine (IcGT) cycles. Various cycle operating parameters such as compressor-pressure-ratio (rp,c), combustor-primary-zone-temperature, equivalence-ratio, and residence time of gas turbine based cycles has been examined. IcGT cycle exhibits higher gas turbine specific work and gas turbine efficiency in comparison to BGT cycle for the same rp,c and turbine rotor inlet temperature.
X