Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Drivability Analysis of Heavy Goods Vehicles

2010-10-05
2010-01-1981
The paper presents linear and non-linear driveline models for Heavy Goods Vehicles (HGVs) in order to evaluate the main parameters for optimal tuning, when considering the drivability. The implemented models consider the linear and non-linear driveline dynamics, including the effect of the engine inertia, the clutch damper, the driveshaft, the half-shafts and the tires. Sensitivity analyses are carried out for each driveline component during tip-in maneuvers. The paper also analyses the overall frequency response using Bode diagrams and natural frequencies. It is demonstrated that the most basic model capable of taking into account the first order dynamics of the driveline must consider the moments of inertia of the engine, the transmission and the wheels, the stiffness and the damping properties of the clutch damper, driveshaft and half-shafts, and the tires (which link the wheel to the equivalent inertia of the vehicle).
Journal Article

A Parallel Hybrid Electric Drivetrain Layout with Torque-Fill Capability

2015-07-01
2015-01-9108
This paper discusses the torque-fill capability of a novel hybrid electric drivetrain for a high-performance passenger car, originally equipped with a dual-clutch transmission system, driven by an internal combustion engine. The paper presents the simulation models of the two drivetrains, including examples of experimental validation during upshifts. An important functionality of the electric motor drive within the novel drivetrain is to provide torque-fill during gearshifts when the vehicle is engine-driven. A gearshift performance indicator is introduced in the paper, and the two drivetrain layouts are assessed in terms of gearshift quality performance for a range of maneuvers.
Journal Article

A Novel Seamless 2-Speed Transmission System for Electric Vehicles: Principles and Simulation Results

2011-06-09
2011-37-0022
This article deals with a novel 2-speed transmission system specifically designed for electric axle applications. The design of this transmission permits seamless gearshifts and is characterized by a simple mechanical layout. The equations governing the overall system dynamics are presented in the paper. The principles of the control system for the seamless gearshifts achievable by the novel transmission prototype - currently under experimental testing at the University of Surrey and on a prototype vehicle - are analytically demonstrated and detailed through advanced simulation tools. The simulation results and sensitivity analyses for the main parameters affecting the overall system dynamics are presented and discussed.
Journal Article

Selection of the Optimal Gearbox Layout for an Electric Vehicle

2011-04-12
2011-01-0946
The paper describes the advantages due to the adoption of multi-speed transmission systems within fully electric vehicles. In particular, the article compares a conventional single-speed transmission layout, a 2-speed layout based on a novel gearbox architecture capable of seamless gearshifts, and a Continuously Variable Transmission layout. The selection of the optimal gear ratios for the 2-speed system has been based on an optimization procedure, taking into account the efficiency characteristics of the components of the whole vehicle powertrain. The control system for the Continuously Variable Transmission system has been designed with the aim of maximizing the efficiency of the operating points of the electric motor.
Journal Article

Optimization of a Multiple-Speed Transmission for Downsizing the Motor of a Fully Electric Vehicle

2012-04-16
2012-01-0630
The research presented in this paper focuses on the effects of downsizing the electric motor drive of a fully electric vehicle through the adoption of a multiple-speed transmission system. The activity is based on the implementation of a simulation framework in Matlab / Simulink. The paper considers a rear wheel drive case study vehicle, with a baseline drivetrain configuration consisting of a single-speed transmission, which is compared with drivetrains adopting motors with identical peak power but higher base speeds and lower peak torques coupled with multiple-speed transmissions (double and three-speed), to analyze the benefits in terms of energy efficiency and performance. The gear ratios and gearshift maps for each multiple-speed case study are optimized through a procedure developed by the authors consisting of cost functions considering energy efficiency and performance evaluation. The cost functions are explained in the paper along with the models adopted for the research.
Technical Paper

Driveline Modeling, Experimental Validation and Evaluation of the Influence of the Different Parameters on the Overall System Dynamics

2008-04-14
2008-01-0632
The paper presents the driveline models conceived by the author in order to evaluate the main parameters for an optimal tuning of the driveline of a passenger vehicle. The paper deals with a full modal analysis of the contributions of the different parts. The implemented models permit to consider the non-linear driveline dynamics, including the effect of the clutch damper (in terms of non-linear stiffness and variable amplitude hysteresis in the case of the models in the time domain) and the halfshafts, the engine mounting system and the tires. The influence of each component of the driveline on the overall frequency response of the system is presented. In particular, the paper demonstrates that the tire can be modeled like a non-linear damper within the rotational dynamics of the driveline and that it is the fundamental component contributing to the first order dynamics of the transmission.
Technical Paper

Block-oriented Models of Torque Gap Filler Devices for AMT Transmissions

2008-04-14
2008-01-0631
Vehicles equipped with Automated Manual Transmissions (AMT) for gear shift control show many advantages in terms of reduction of fuel consumption and improvement of driving comfort and shifting quality. In order to increase both performance and efficiency, an important target is focused on the minimization of the typical torque interruption during the gear shift, especially in front of the conventional automatic transmission. Recently, AMT are proposed to be connected with planetary gears and friction brakes, in order to reduce the torque gap during the gear change process. This paper is focused on a block-oriented simulation methodology developed in Matlab/Simulink/Stateflow® environment, able to simulate the performance of a complete FWD powertrain and in particular to predict dynamic performance and overall efficiency of the AMT with innovative Torque Gap Filler devices (TGF).
Journal Article

Torque Gap Filler for Automated Manual Transmissions: Principles for the Development of the Control Algorithm

2009-04-20
2009-01-0952
One of the most significant tasks in automotive design is related to the implementation of gearboxes capable of reducing the torque gap during the gearshift process and, at the same time, not decreasing vehicle performance from the point of view of driveline efficiency. Automated gearboxes based on torque converters ([1], [2]) satisfy the first requirement but not the second. On the other hand, manual automated gearboxes ([3], [4], [5], [6]) satisfy the requirements in terms of consumption, due to the absence of the dissipations caused by the torque converter. In fact, they consist of the basic layout of a manual transmission with hydraulic or electromechanical actuators which are adopted for the clutch and the synchronizers. However, automated manual transmissions cannot guarantee optimal longitudinal dynamics of the vehicle due to the discontinuity in torque transmission when the clutch is disengaged.
X