Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Standard

Automatic Transmissions—Manual Control Sequence

2007-10-22
HISTORICAL
J915_200710
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
Standard

Automatic Transmissions - Manual Control Sequence

2017-03-09
CURRENT
J915_201703
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks. This generally refers to left hand drive mechanical shift applications.
Standard

AUTOMATIC TRANSMISSIONS—MANUAL CONTROL SEQUENCE

1993-04-01
HISTORICAL
J915_199304
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks.
Standard

Automatic Transmissions—Manual Control Sequence

2000-11-02
HISTORICAL
J915_200011
The scope and purpose of this SAE Recommended Practice is to provide a standard pattern or sequence for the manual control of automatic transmissions in passenger cars and light-duty trucks.
Standard

Passenger Car and Light Truck Automatic Transmission and Automatic Transaxle Test Code

2015-06-30
CURRENT
J651_201506
The extent of test conditions on the dynamometer must be sufficient to determine the efficiency characteristics corresponding to the following range of vehicle operations in all gear ratios with locked torque converters (open converter can also be done where appropriate and noted). a Efficiency versus output speed versus input torque b Torque ratio versus output speed c Input speed versus output speed d Output torque versus output speed e Parasitic loss versus input speed (spin losses) f Cooler flow g Output torque bias (front wheel drive transaxles)
Standard

Measurement of Material Properties for Wet Friction Materials

2022-09-30
CURRENT
J2968/1_202209
This SAE Recommended Practice is intended as the definition of a standard test, which may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering its use. The specific purpose of this SAE Recommended Practice is to define a procedure to determine intrinsic properties of friction materials such as compressive modulus and rebound/recovery time at specific fatigue test pressures. Results from this test will both independently characterize the friction material and serve as input to the compression fatigue test. NOTE: If this test is intended to determine the rebound interval for the compression fatigue test, then the maximum test pressure (Pmax) in this procedure must be selected with future fatigue testing levels in mind. It is important that the rebound time is sufficient at the maximum apply pressure to allow the matieral to rebound back to its original thickness. Standard reporting processes are recommended.
Standard

Hydrodynamic Drive Test Code

2011-04-04
HISTORICAL
J643_201104
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE18 or AE29
Standard

Hydrodynamic Drive Test Code

2018-12-05
HISTORICAL
J643_201812
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Hydrodynamic Drive Test Code

2000-05-16
HISTORICAL
J643_200005
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE—For more information about these characteristics and the design of hydrodynamic drives, see “Design Practices—Passenger Car Automatic Transmissions,” SAE Advances in Engineering, Vol. 5.
Standard

HYDRODYNAMIC DRIVE TEST CODE

1989-06-01
HISTORICAL
J643_198906
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed. b Input speed versus speed ratio and output speed. c Efficiency versus speed ratio and output speed. d Capacity factor versus speed ratio and output speed. e Input torque versus input speed. NOTE: For more information about these characteristics and the design of hydrodynamic drives, see "Design Practices--Passenger Car Automatic Transmissions," SAE Advances in Engineering, Vol. 5.
Standard

Hydrodynamic Drive Test Code

2023-08-01
CURRENT
J643_202308
The range of test conditions on the dynamometer shall be sufficient to determine the primary operating characteristics corresponding to the full range of vehicle operations. The characteristics to be determined are: a Torque ratio versus speed ratio and output speed b Input speed versus speed ratio and output speed c Efficiency versus speed ratio and output speed d Capacity factor versus speed ratio and output speed e Input torque versus input speed NOTE: For more information about these characteristics and the design of hydrodynamic drives, refer to “Design Practices: Passenger Car Automatic Transmissions,” SAE Advances in Engineering, AE-18 (Third Ed.) or AE-29 (Fourth Ed.).
Standard

Planetary Gears - Terminology

2018-07-12
HISTORICAL
J646_201807
Figures 1 through 5 illustrate in simplified form some of the more common planetary gear arrangements in order to establish applicable terminology. Figures 6 and 7 provide additional examples that use elements of those gear arrangements. Gear ratio is the numerical ratio of input to output speed.
Standard

Automatic Transmission Hydraulic Pump Test Procedure

1999-01-28
HISTORICAL
J2311_199901
This SAE Recommended Practice provides a method to determine the performance characteristics of the hydraulic oil pumps used in automatic transmissions and automatic transaxles. This document outlines the specific tests that describe the performance characteristics of these pumps over a range of operating conditions and the means to present the test data. This document is not intended to assess pump durability.
X