Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Standard

Design Considerations for Enclosed Turboshaft Engine Test Cells

2018-11-21
CURRENT
AIR4989A
This SAE Aerospace Information Report (AIR) developed by a broad cross section of personnel from the aviation industry and government agencies is offered to provide state-of-the-art information for the use of individuals and organizations designing new or upgraded turboshaft engine test facilities.
Standard

DESIGN CONSIDERATIONS FOR ENCLOSED TURBOSHAFT ENGINE TEST CELLS

2007-11-15
HISTORICAL
AIR4989
This SAE Aerospace Information Report (AIR) developed by a broad cross section of personnel from the aviation industry and government agencies is offered to provide state-of-the-art information for the use of individuals and organizations designing new or upgraded turboshaft engine test facilities.
Standard

Design, Calibration, and Test Methods for Turbine Engine Icing Test Facilities

2023-05-19
CURRENT
AIR6189
This SAE Aerospace Information Report (AIR) provides descriptions of test procedures and established practices for the application, use, and administration of the conduct of icing testing for all types of turbine engines in conventional supercooled liquid (14 CFR Part 25 Appendix C) environmental conditions in ground test facilities (sea-level and altitude) for icing certification purposes.
Standard

Installed Outdoor Engine Testing

2007-11-15
HISTORICAL
AIR5301
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

Installed Outdoor Engine Testing

2017-11-29
HISTORICAL
AIR5301A
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

TURBINE FLOWMETER FUEL FLOW CALCULATIONS

2007-11-15
HISTORICAL
ARP4990
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

Turbine Flowmeter Fuel Flow Calculations

2013-10-04
HISTORICAL
ARP4990A
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

Turbine Flowmeter Fuel Flow Calculations

2020-10-22
CURRENT
ARP4990B
This SAE Aerospace Recommended Practice (ARP) provides to the aerospace industry a procedure for the consistent and accurate calculation of fuel flow using turbine flowmeters during development, production, and post overhaul/repair gas turbine engine testing.
Standard

GAS TURBINE ENGINE TEST CELL CORRELATION

1961-08-01
HISTORICAL
ARP741
This recommended practice considers many facets of testing which have a bearing on obtaining accurate, repeatable engine performance data. These are: ◦ TEST CELL CONFIGURATIONS ◦ TEST CELL INSTRUMENTATION ◦ ENGINE PERFORMANCE CORRECTION FACTORS ◦ TEST CELL EFFECTS ◦ INSTRUMENTATION CALIBRATION ◦ CORRELATION TEST PROGRAM
Standard

TEST CELL INSTRUMENTATION

1996-11-01
HISTORICAL
AIR5026
This document discusses, in broad general terms, typical present instrumentation practice for post-overhaul gas turbine engine testing. Production engine testing and engine development work are outside the scope of this document; they will use many more channels of instrumentation, and in most cases will have requirements for measurements that are never made in post-overhaul testing, such as fan airflow measurements, or strain measurements on compressor blades. The specifications for each parameter to be measured, in terms of measurement range and measurement accuracy, are established by the engine manufacturers. Each test cell instrument system should meet or exceed those requirements. Furthermore, each instrument system should be recalibrated regularly, to ensure that it is still performing correctly.
Standard

Acoustical Considerations for Engine Test Cells

2018-11-21
CURRENT
ARP5759
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted, that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements.
Standard

Trend Analysis for Maintaining Correlation of Gas Turbine Engine Test Cells

2011-03-10
HISTORICAL
ARP5758
This document describes a recommended practice and procedure for the trending of parameters to maintain the test cell correlation status. Trending is performed to monitor test cells for changes that can affect engine performance or the data acquired from engine tests.
Standard

Configuration Control for Maintaining Correlation of Gas Turbine Engine Test Cells

2022-10-05
WIP
ARP6028B
The FAA has issued Advisory Circular, AC43-207, that recommends re-correlation, trending or period checks. The FAA, AC43-207 bases their recommendation on ARP741. This paper describes a recommended practice and procedure for the configuration control requirements to maintain test cell correlation status. This is necessary to maintain performance measurement integrity, particularly when correlation approval is achieved by statistical trending. The configuration of a test facility that exists at the time when a correlation is being carried out should be "base lined" as a condition of correlation approval acceptance, and, be maintained during the time period that the respective correlation approval lasts. This defines test facility configuration control. This is due to the fact that a change in configuration may have the potential to change the established correlation factors and measured engine performance.
Standard

Configuration Control for Maintaining Correlation of Gas Turbine Engine Test Cells

2020-10-21
CURRENT
ARP6028A
The FAA has issued Advisory Circular, AC43-207, that recommends re-correlation, trending or period checks. The FAA, AC43-207 bases their recommendation on ARP741. This paper describes a recommended practice and procedure for the configuration control requirements to maintain test cell correlation status. This is necessary to maintain performance measurement integrity, particularly when correlation approval is achieved by statistical trending. The configuration of a test facility that exists at the time when a correlation is being carried out should be "base lined" as a condition of correlation approval acceptance, and, be maintained during the time period that the respective correlation approval lasts. This defines test facility configuration control. This is due to the fact that a change in configuration may have the potential to change the established correlation factors and measured engine performance.
Standard

Configuration Control for Maintaining Correlation of Gas Turbine Engine Test Cells

2009-03-13
HISTORICAL
ARP6028
The configuration of a test facility that exists at the time when a correlation is being carried out should be “base lined” as a condition of correlation approval acceptance, and, be maintained during the time period that the respective correlation approval lasts. This defines test facility configuration control. This is due to the fact that a change in configuration may have the potential to change the established correlation factors and measured engine performance. If such a change occurs then this should be judged by the respective OEM’s or designated correlation approval authorities Subject Matter Expert (SME). In some cases, this may involve consultation with the engine project customer or airworthiness authorities.
Standard

Numerical Modeling Techniques for Jet Engine Test Cell Aerodynamics

2019-03-21
CURRENT
AIR6355
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines, and particularly for those who might be interested in investigating steady-state performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of numerical modeling and simulation. It is not the intent of this standard to provide specific test cell design recommendations, which are covered in the reference documentation.
Standard

Test Facility Shakedown and Commissioning

2017-11-29
CURRENT
AIR6364
The paper discusses in general terms the activities required to be undertaken or demonstrated during the establishment of the facility such as: the assessment checks prior to forwarding to the end users site for embodiment into the facility system the establishment of the facility such as trial installations of hardware, functionality checking of lifting transportation and access systems, centerline pull checks, pressure testing of fuel and air start systems, flushing of wet systems and electrical continuity checking. the commissioning of the facility such as instrumentation calibrations, engine starts, engine running, assessment of command and control system, assessment of DAS system, aerodynamic and acoustic surveys. The paper will concentrate on the main engineering engine related aspects of the facility and will not necessarily contain information on the construction validation activities such as HVAC, electrical, facility fire system, waste water etc.
X