Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Upper Extremity Fractures in Restrained Children Exposed to Passenger Airbags

2003-03-03
2003-01-0507
Restrained children between the ages of 3 to 15 years in crashes were identified in an on-going crash surveillance system (1998-2002) which links insurance claims data to telephone survey and crash investigation data. The risk of upper extremity injury associated with airbag deployment was estimated and a series of cases was examined using in-depth crash investigation to identify the mechanisms of these injuries. This study found that 3.5% of children who were exposed to a passenger airbag (PAB) received an upper extremity fracture, making them 2.5 times as likely to sustain an upper extremity fracture than children in similar crashes who were not exposed to a PAB. Female children were 2.2 times as likely to receive an isolated upper extremity fracture when exposed to a PAB than male children. The incidence rate, gender difference, and injury mechanism in children all appear to be similar to those of adults.
Technical Paper

Advanced Safety Technology for Children and Young Adults: Trends and Future Challenges

2006-10-16
2006-21-0007
Data presented in this paper demonstrated that the landscape for child occupant protection - the children and their restraints, vehicles, and crashes - is changing rapidly. Children are not small adults but are rather rapidly growing, developing, and changing and so too are their restraint needs. The past several years witnessed a growing awareness of these biomechanical challenges with the emergence of increased use of size-appropriate restraints for children under age 9 years and differences in patterns of injury by age. Vehicles involved in crashes with children reflect the trend overall: less passenger vans and cars and more light trucks, the majority of which are equipped with second generation air bags. The majority of crashes occurred on roads with posted speed limits below 45 miles per hour. The age group of particular concern is the newly driving teenage years (16-19) in which the crash and fatality rates are the highest among all age groups.
Technical Paper

Injury Causation Scenarios in Belt-Restrained Nearside Child Occupants

2007-10-29
2007-22-0013
Successful development of side impact safety systems for rear row child occupants requires an understanding of injury causation and mitigation. However, data to guide the design of such safety systems for seat belt-restrained occupants is limited to injury risk assessments. Thus, we sought to elucidate Injury Causation Scenarios (ICS's) in children restrained by seat belts in nearside impacts. Included in the study were 4 to 15 year old children, involved in a side impact, seated on the nearside in the rear rows, restrained by a seat belt alone (no booster seats or side airbags) and who received an AIS 2+ injury. A Contact Point Map summarized the vehicle components that contribute to the injuries. The majority of head and face contacts points were found horizontally within the rear half of the window, and vertically from the window sill to the center of the window, and were a result of contact with both interior structures and structures on the crash partner.
Technical Paper

The Utility of Hybrid III and THOR Chest Deflection for Discriminating Between Standard and Force-Limiting Belt Systems

2003-10-27
2003-22-0013
Recent field data studies have shown that force-limiting belt systems reduce the occurrence of thoracic injuries in frontal crashes relative to standard (not force-limiting) belt systems. Laboratory cadaver tests have also shown reductions in trauma, as well as in chest deflection, associated with a force-limiting belt. On the other hand, tests using anthropomorphic test devices (ATDs) have shown trends indicating increased, decreased, or unchanged chest deflection. This paper attempts to resolve previous experimental studies by comparing the anterior-posterior and lateral chest deflections measured by the THOR and Hybrid III (H-III) dummies over a range of experimental conditions. The analysis involves nineteen 48-km/h and 57-km/h sled tests utilizing force-limiting and standard seat belt systems, both with an air bag. Tests on both the driver side and the passenger side are considered.
Technical Paper

Whole-body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests

2006-11-06
2006-22-0013
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes.
X