Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improvement of Natural-gas HCCI Combustion by Internal EGR by Means of Exhaust Valve Re-opening

2009-11-03
2009-32-0079
To control natural-gas HCCI combustion, internal exhaust gas recirculation (EGR) by exhaust valve reopening (EVRO) during the induction stroke was applied to a single-cylinder test engine. The results demonstrate that combustion phasing can be controlled successfully by adjusting the EGR ratio, and so improvement of thermal efficiency and reduction in unburned exhaust emissions are feasible. In addition, the results of the EVRO method were compared to those of intake-valve pilot opening (IVPO) during the exhaust stroke. It was shown that EVRO is more useful than IVPO as a heat-recovery method for HCCI combustion.
Technical Paper

Improvement in Combustion Characteristics of Biodiesel by Reforming with Cross-Metathesis Reaction

2021-09-21
2021-01-1205
The boiling point curve of fatty acid methyl esters (FAME), or biodiesel fuel, can be adapted to that of diesel fuel by breaking FAME down into a low-molecular structure using a cross-metathesis reaction with a short-chain olefin. Reformulated FAME by a metathesis reaction consists mainly of medium-chain olefins and fatty acid methyl esters. In the present study, the engine performance and exhaust emissions from reformulated FAME were investigated through engine bench tests. Surrogate fuels made from typical chemical components of reformulated FAME were used to clarify the effects of respective components upon combustion. Surrogate fuels were made by mixing 1-decene, 1-tetradecene, methyl laurate, methyl palmitate, and methyl oleate to simulate the boiling point, oxygen mass concentration, and calorific value of reformed biodiesel of waste cooking oil methyl ester (WME). A single-cylinder diesel engine equipped with common-rail-type injection system was used.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Journal Article

Effect of Additives in Various Biodiesels and Their Blends on Cold Flow Properties, Oxidation Stability and Diesel Exhaust Emissions

2013-10-14
2013-01-2660
The objective of this study was to obtain an improved understanding of the effects of the simultaneous use of cold flow improver (CFI) and antioxidant on the cold flow properties, oxidation stability and diesel exhaust emissions of various biodiesels and biodiesel blends. Cold flow properties were evaluated by assessing the cloud point (CP) and pour point (PP) values, as well as from the results of the cold soak filtration test (CSFT). Oxidation stability was also determined by measuring the peroxide induction period (IP). The neat biodiesels (B100) derived from soybean oil(SME), Jatropha curcus oil(JME), rice bran oil(RBME), palm oil(PME) and waste cooking oil(WME), and biodiesel blends with JIS No.2 diesel fuel were tested. A CFI and antioxidant specially designed for use in biodiesel fuels were employed during the work. The experimental data demonstrated that the addition of antioxidant had no effect on either the CP or PP values.
Journal Article

The Effect of the Induction of Nitrogen Oxides on Natural Gas HCCI Combustion

2014-10-13
2014-01-2697
The main aim of this study is to investigate the effect of NO and NO2 on the combustion characteristics such as pressure development and combustion phasing in natural gas HCCI engine. A secondary aim is to demonstrate a method of obtaining a significant sensitizing effect on methane oxidation reaction from small amounts of NOx. Experiments were conducted using a rapid compression-expansion machine that was constructed from a single-cylinder diesel engine. First, the sensitizing effect of NO and NO2 on the HCCI combustion of natural gas was investigated in a case where NOx was uniformly mixed into a charge. Obtained results show that the auto-ignition timing is significantly advanced and an acute heat release is promoted by adding either NO or NO2.
Technical Paper

Influence of Compression Ratio on Performance and Variations in Each Cylinder of Multi-Cylinder Natural Gas Engine with PCCI Combustion

2007-07-23
2007-01-1877
In this study, the influence of compression ratio on engine performance and variations of auto-ignition timing in each cylinder were evaluated in a 4-cycle multi-cylinder natural gas engine with PCCI combustion system. In experiment, the compression ratio was systematically changed from 19 to 25. From the result, it was clarified that an increase in compression ratio makes not only the improvement of engine output and fuel economy but also the reduction of NOx emission, even though the mechanical loss is increased. Simultaneously, the variation of auto-ignition timing in each cylinder can also be reduced.
Technical Paper

Experimental Study of a Dual-Fuel Diesel Engine with Biodiesel and Low-Calorie Gas Fuels

2007-07-23
2007-01-2026
The experimental study has been carried out on a diesel engine dual-fueled by wood-pyrolysis gas and biodiesel fuel. Wood-pyrolysis gas was simulated by a low-calorie mixed gas (LCG), which consists of hydrogen, methane and inert gas. Effects of LCG/biodiesel ratio, biodiesel injection-timing, and gas-fuel composition were examined. Obtained results show that under a constant-torque condition, an increase in gas fuel consumption causes a decrease in a brake thermal efficiency due to a decrease in combustion efficiency and specific heat ratio. Also, NOx emission in exhaust gas is decreased by increase in gas fuel consumption under the low load condition, while it shows no change under the relatively high load condition. In addition, an early injection of biodiesel is effective to reduce carbon monoxide emission due to increase in combustion pressure and temperature.
Technical Paper

Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel

1998-02-23
980506
Diesel combustion and emissions with four kinds of oxygenated agents as main fuels were investigated. Significant improvements in smoke, particulate matter, NOx, THC, and thermal efficiency were simultaneously realized with the oxygenates, and engine noise was also remarkably reduced for the oxygenates with higher ignitability. The improvements in the exhaust emissions and the thermal efficiency depended almost entirely on the oxygen content in the fuels regardless of the oxygenate to diesel fuel blend ratios and type of oxygenate. The unburned THC emission and odor intensity under starting condition with an oxygenate were also much lower than with conventional diesel fuel.
Technical Paper

Analysis of Diesel Soot Formation under Varied Ignition Lag with a Laser Light Extinction Method

1990-02-01
900640
Soot emission from diesel engines generally increases with shorter ignition lags. However, the detailed process and mechanism of this phenomenon has not been well understood. This investigation attempts to observe and analyze the in-chamber soot formation process at various ignition lags by high-speed photography of the direct flame images and laser shadowgraphs as well as the laser light extinction. In the experiment, the separation of soot concentration from the soot-fuel mixture concentration was established by subtracting the laser light extinction intensity through a non-firing chamber from that through a firing chamber. It was found that the soot concentration in the swirl chamber reached a maximum value immediately after the start of combustion, and then decreased rapidly. With shorter ignition lags, the maximum and final soot concentrations in the chamber increased.
Technical Paper

Application of a Multi-Cylinder Natural Gas PCCI Engine with Spark Ignition to Generator

2008-04-14
2008-01-0015
In this study, it was attempted to operate the 4-cycle multi cylinder natural gas engine introduced PCCI combustion system without electric heater for intake air heating. In experiment, by optimization of the compression ratio and in addition to the control of spark ignition timing, the engine could be operated using only intake air heating with coolant water. The results showed that the suppression of the auto-ignition timing variations among cylinders owing to the independent spark timing control of each cylinder leads to the improvement of engine output, fuel economy and exhaust emissions. Furthermore, this paper describes the engine starting and corresponding change of engine load on electric demand on generator. The stable operation could be achieved by using spark ignition, controlling of excess air ratio and intake air temperature during change the engine load from idle to rated power.
Technical Paper

Characteristics of Unburned Hydrocarbon Emissions in a Low Compression Ratio DI Diesel Engine

2009-04-20
2009-01-1526
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

2001-03-05
2001-01-1259
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Characteristics of DPF for Diesel Engine Fueled With Biodiesel Fuel - First Report: Self-Regeneration Behavior on Vehicle Road Test and Engine Bench Rig Test

2004-01-08
2004-01-1883
The performance of Diesel Particulate Filter(DPF) using biodiesel fuel was evaluated in a vehicle road test and in a diesel engine bench rig. The DPF used for the tests was made of SiC honeycomb which had a soot filtering efficiency close to 100%. The DPF/diesel engine system used was not configured for continuous regeneration. Regeneration was completed by batch heating with electric power. From the result of vehicle road test, the distance between regeneration for the vehicle fueled with biodiesel fuel was longer than that fueled with petro-diesel fuel. This gain in distance was greater than what was expected from the soot reduction because of the biodiesel fuel characteristics. This observation was further investigated in diesel engine bench rig with the DPF using several biodiesel fuels with different degree of purity.
Technical Paper

Combustion in a Two-stage Injection PCCI Engine With Lower Distillation-temperature Fuels

2004-06-08
2004-01-1914
The combustion characteristics in a partially premixed charge compression ignition (PCCI) engine with n-hexane were compared with ordinary diesel fuel to evaluate combustion improvements with lower distillation-temperature fuels. In the PCCI engine, a lean mixture was formed reasonably with early stage injection and the additional fuel was supplied with a second stage fuel injection after ignition. With n-hexane, thermal efficiency improved while simultaneously maintaining low NOx and smokeless combustion. A CFD analysis simulated the mixture formation processes and showed that the uniformity of the mixture with the first stage injection improves with lower distillation-temperature fuels.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

2002-10-21
2002-01-2853
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Technical Paper

Analysis of Contribution to SPM by Organic Matters Using High-Performance Liquid Chromatography (HPLC)

2002-03-04
2002-01-0653
Most countries consider it is harmful for humans to inhale SPM of fine organic particles and elemental carbon less than 2.5 μ in diameter1,2). It is generally believed that organic matters in SPM are mainly composed of diesel exhaust particulate and soot from residential chimneys or industrial smokestacks3,4). To determine the contribution ratios of several organic substances to SPM, we characterized SPM, diesel exhaust particulate (DEP), powdered summer radial tire, and bitumen, using high performance liquid chromatography, field desorption mass spectrometry and linear theory.
Technical Paper

Combustion Control and Operating Range Expansion With Direct Injection of Reaction Suppressors in a Premixed DME HCCI Engine

2003-03-03
2003-01-0746
Direct injection of various ignition suppressors, including water, methanol, ethanol, 1-propanol, hydrogen, and methane, was implemented to control ignition timing and expand the operating range in an HCCI engine with induced DME as the main fuel. Ultra-low NOx and smoke-less combustion was realized over a wide operating range. The reaction suppressors reduced the rate of low-temperature oxidation and consequently delayed the onset of high-temperature oxidation. Analysis of the chemical kinetics showed a reduction of OH radical in the premixed charge with the suppressors. Among the ignition suppressors, alcohols had a greater impact on OH radical reduction resulting in stronger ignition suppression. Although water injection caused a greater lowering of the temperature, which also suppressed ignition, the strong chemical effect of radical reduction with methanol injection resulted in the larger impact on suppression of oxidation reaction rates.
X