Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Application of Synthetic Renewable Methanol to Power the Future Propulsion

2020-09-15
2020-01-2151
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines.
Technical Paper

NOx Reduction in a Medium-Speed Single-Cylinder Diesel Engine using Miller Cycle with Very Advanced Valve Timing

2009-09-13
2009-24-0112
The objective of this study is to achieve high reduction of NOx emissions in a medium-speed single-cylinder research engine. The main feature of this research engine is that the gas exchange valve timing is completely adjustable with electro-hydraulic actuators. The study is carried out at high engine load and using a very advanced Miller valve timing. Since the engine has no turbocharger, but a separate charge air system, 1-D simulations are carried out to find the engine setup, which would be close to the operating points of a real engine. The obtained NOx reduction is over 40% with no penalty in fuel consumption.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Technical Paper

Novel Crank Mechanism Increasing Engine Efficiency and Reducing CO2 Emissions

2015-04-14
2015-01-1259
This study presents a novel crank mechanism which enables easy and fast compression ratio adjustment. The novel crank mechanism and piston travel are explained and highlighted. The basic idea is that eccentric gear is installed on a crankshaft web. Eccentric gear is fitted to the big end of the connection rod and eccentricity is controlled by rotating the control gear a discrete amount. Thus the position of eccentricity is varied and controls an effective stroke length. The compression ratio is adjusted to best fit current load demand, either optimizing fuel efficiency or engine power and torque. Adjustments are individual to each cylinder. The system is capable of adjusting from min to max within 10 milliseconds [ms]. Emphasis is on reduction of CO2 emissions and reducing fuel consumption, especially at part load condition. The governing mechanical equations are presented.
Technical Paper

Modeling the Impact of Alternative Fuel Properties on Light Vehicle Engine Performance and Greenhouse Gases Emissions

2019-12-19
2019-01-2308
The present-day transport sector needs sustainable energy solutions. Substitution of fossil-fuels with fuels produced from biomass is one of the most relevant solutions for the sector. Nevertheless, bringing biofuels into the market is associated with many challenges that policymakers, feedstock suppliers, fuel producers, and engine manufacturers need to overcome. The main objective of this research is an investigation of the impact of alternative fuel properties on light vehicle engine performance and greenhouse gases (GHG). The purpose of the present study is to provide decision-makers with tools that will accelerate the implementation of biofuels into the market. As a result, two models were developed, that represent the impact of fuel properties on engine performance in a uniform and reliable way but also with very high accuracy (coefficients of determination over 0.95) and from the end-user point of view.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
Technical Paper

Effect of Alternative Fuels on Marine Engine Performance

2019-12-19
2019-01-2230
Marine transportation sector is highly dependent on fossil-based energy carriers. Decarbonization of shipping can be accomplished by implementing biobunkers into an existing maritime fuel supply chain. However, there are many compatibility issues when blending new biocomponents with their fossil-based counterparts. Thus, it is of high importance to predict the effect of fuel properties on marine engine performance, especially for new fuel blends. In the given work, possible future solutions concentrated on liquid fuels are taken into account. Under consideration are such fuels as biodiesel (FAME), hydrotreated vegetable oil (HVO), straight vegetable oil (SVO), pyrolysis oil, biocrude, and methanol. Knowledge about the behavior of new fuel in an existing engine is notably important for decision makers and fuel producers. Hence, the main goal of the present work is to create a model, which can predict the engine performance from the end-user perspective.
X