Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Seatback Angle on Occupant Dynamics in Simulated Rear-End Impacts

1992-11-01
922521
In the early 1980's a series of tests was conducted simulating rear-end crashes. The tests demonstrated that a conventional automotive bucket seat adequately retains an unbelted dummy on the seat for rear-end impacts up to 6.4 m/s and 9.5 g severity. For this severity of impact the total rearward rotation of the seatback is less than 60° from the vertical and is associated with a normal acceleration of the dummy's chest into the seatback of up to 10 g. The tangential acceleration of the dummy, which may induce riding up the seat, was generally less than the normal component so that the occupant was prevented from sliding up the deflected seatback. The bucket seat provided adequate containment and control of occupant displacements for each of the initial seatback angles of 9°, 22°, and 35°.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
X