Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

Traction Battery and Battery Control Unit Development

2012-04-16
2012-01-0122
The performance of high voltage batteries is the key factor for further success of electric vehicles. The primary areas for battery development include high voltage (HV) and functional safety, maximum power and usable energy, battery life, packaging and weight reduction. This paper explains the development of the HV battery and the battery management system for the FEV Liona fleet, a retrofit of a pure electric powertrain into a FIAT 500. The multi-disciplinary process used to develop this program includes electrical, mechanical and functional aspects. The layout of the electrical system includes cell selection, layout of modules and the interconnection of twelve modules to a battery pack. The mechanical design of mounting the battery under the floor addresses the housing issues regarding robustness and sealing, the packaging into the vehicle as well as the positioning of the HV components inside the battery.
Technical Paper

Exhaust Emission Reduction of Combustion Engines by Barrier Discharge - A new Reactor/Generator System

1999-10-25
1999-01-3638
An improved plasma reactor has been designed, built and evaluated. It is characterized by a reduced power per area ratio, relative to previous designs, and includes several improvements to run the whole system safely in a car. The new reactor design includes a concentric inner high voltage electrode, a grounded outer electrode, a shielded high-voltage and high temperature resistant electrical connection. A generator controller has been developed for better control of operating conditions as required during the engine cold start phase. The new generator/reactor system was installed in the exhaust pipe of a gasoline direct injection engine. HC emissions could be reduced up to 30 % in the first 40 seconds of a cold start test. In addition to HC treatment the dielectric barrier discharge has also been investigated as a method for regenerating a diesel particulate trap.
X