Refine Your Search

Topic

Search Results

Journal Article

Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine—A CFD Analysis

2019-10-08
Abstract Higher water evaporation and proper water vapor distribution in the cylinder are very vital for improving emission and performance characteristics of water-injected engines. The concentration of water vapor should be higher and uniform near the walls of the combustion chamber and nil at the spark plug location. In direct water-injected engines, water evaporation, vapor distribution, and spray impingement are highly dependent on injector parameters, viz., water injector orientation (WIO), location, and spray angle. Therefore, in this article, a computational fluid dynamics (CFD) investigation is conducted to study the effects of water injector spray angle (WISA), and WIO on the water evaporation, emission, and performance characteristics of a four-stroke, wall-guided gasoline direct injection (GDI) engine. The WISA is varied from 10° to 35°, whereas the WIO is varied from 15° to 35° in steps of 5°.
Journal Article

Effect of Exhaust Gas Recirculation and Intake Air E-Boosting on Gasoline Compression Ignition Combustion

2020-04-16
Abstract This experimental study aims to evaluate the engine performance and emissions when exhaust gas recirculation (EGR) and e-boosting are used in a gasoline compression ignition (GCI) engine operating at 2000 rpm and 800-900 kPa indicated mean effective pressure (IMEP) conditions. In an automotive size common-rail diesel engine architecture, a partially premixed charge-based GCI combustion was realized implementing triple injections with a split ratio of 50%, 10%, and 40% and injection timings of 170, 40, and 9-6 crank angle degrees (°CA) before top dead center (bTDC). The previous tests performed in the same engine suggested this injection strategy could achieve further nitrogen oxides (NOx) reduction if EGR is utilized with the help of intake air boosting to compensate for the loss in power output and engine efficiency. In the present study, the GCI engine is set up with a conventional EGR system and a supercharger driven by an electric motor (or an e-booster).
Journal Article

Ducted Fuel Injection vs. Free-Spray Injection: A Study of Mixing and Entrainment Effects Using Numerical Modeling

2020-10-05
Abstract Diesel engines are an important technology for transportation of both people and goods. However, historically they have suffered a significant downside of high soot and nitrogen oxides (NOx) emissions. Recently, ducted fuel injection (DFI) has been demonstrated to attenuate soot formation in compression-ignition engines and combustion vessels by 50% to 100%. This allows for diesel engines to be run at low-NOx emissions that would have otherwise produced significantly more soot due to the soot/NOx tradeoff. Currently the root causes of this soot attenuation are not well understood. To be able to better optimize DFI for use across a variety of engines and conditions, it is important to understand clearly how it works. This study expands on the current understanding of DFI by using numerical modeling under nonreacting conditions to provide insights about the roles of entrainment and mixing that would have been much more challenging to obtain experimentally.
Journal Article

Rate Shape Design for Gasoline-Like Fuels at High Injection Pressures Using One-Dimensional Hydraulic Models

2022-01-13
Abstract Recent research has demonstrated that gasoline compression ignition (GCI) can improve the soot-oxides of nitrogen (NOx) trade-off of conventional diesel engines due to the beneficial properties of light distillate fuels. In addition to air handling and aftertreatment, fuel systems also require further development to realize the potential efficiency and emissions benefits of GCI. Injector one-dimensional (1-D) hydraulic modeling is an important design tool used for this purpose. The current study is a continuation of prior work that used computed physical fuel properties and hydraulic models to accurately simulate high-pressure injection behavior relevant to GCI. With respect to fuel characteristics for the model, physical properties were validated by direct comparison to measurements at temperatures and pressures reaching 150°C and 2500 bar, respectively.
Journal Article

Numerical Study to Achieve Low Fuel Consumption and Nitrogen Oxides Emissions in a Split-Cycle Engine Adapted from the Conventional Architecture

2021-02-12
Abstract This work presents a numerical study of the performance and nitrogen oxides (NOx) emissions of a conventional ethanol engine converted to work as a flex-fuel nonconventional architecture: the Split-Cycle Engine (SCE). For this study, the conventional engine fueled with hydrous ethanol was modeled and validated with data from experimental tests. Then the model was converted to operate as an SCE with two compressors and two expanders and simulated with a progressive downsizing of the compressors of the SCE. When the swept volume of the compressors was reduced to 87% of that of the expanders, the thermal conversion efficiency increased by 3.3%. Because of this, the downsized SCE was submitted to simulation runs using two different fuels: hydrous ethanol (H100) and an indolene-ethanol blend (H85). The results of the simulations were compared to the experimental results of the conventional engine.
Journal Article

Analysis of Regulated Pollutant Emissions and Aftertreatment Efficiency in a GTDi Engine Using Different SOI Strategies

2018-06-25
Abstract In order to improve performance and minimize pollutant emissions in gasoline turbocharged direct-injection (GTDi) engines, different injection strategies and technologies are being investigated. The inclusion of exhaust gas recirculation (EGR) and the variation of the start of injection (SOI) are some of these strategies that can influence the air-to-fuel (AF) mixture formation and consequently in the combustion process and pollutant emissions. This paper presents a complete study of the engine performance, pollutant emissions and aftertreatment efficiency that produces the SOI variation with a fixed EGR rate in a 4-cylinder, turbocharged, gasoline direct-injection engine with 2.0 L displacement. The equipment used in this study are TSI-EEPS for particle measurement and HORIBA MEXA 1230-PM for soot measurement being HORIBA MEXA 7100-DEGR with a heated line selector the system employed for regulated gaseous emission measurement and aftertreatment evaluation.
Journal Article

CFD Modeling of Tailpipe NOx Sensor Accuracy

2018-08-08
Abstract In a modern diesel aftertreatment system, a sensor for nitrogen oxides (NOx) placed downstream of the selective catalytic reduction (SCR) catalyst is necessary to determine if the tailpipe NOx concentration remains below the applicable On-board diagnostic (OBD) threshold. Typically the same NOx sensor also provides feedback to the dosing control module to adjust diesel exhaust fluid (DEF) dosing rate thereby controlling tailpipe NOx and ammonia emissions. However, feedback signal sent by the tailpipe NOx sensor may not always be accurate due to reasons including non-uniformity in NOx and ammonia distributions at SCR outlet. Flow based metrics from computational fluid dynamics (CFD) analyses, that are typically used to qualitatively assess NOx sensor accuracy in different designs are often inadequate. In this work, an improved CFD analysis procedure has been developed for assessing NOx sensor accuracy.
Journal Article

Review of Nitrous Oxide (N2O) Emissions from Motor Vehicles

2020-02-27
Abstract Nitrous oxide (N2O) is both an ozone depleting gas and a potent greenhouse gas (GHG), having a global warming potential (GWP) value nearly 300 times that of carbon dioxide (CO2). While long known to be a trace by-product of combustion, N2O was not considered a pollutant of concern until the introduction of the three-way catalyst (TWC) on light-duty gasoline vehicles in the 1980s. These precious metal-containing catalysts were found to increase N2O emissions substantially. Through extensive research efforts, the effects of catalyst type, temperature, air/fuel ratio, space velocity, and other factors upon N2O emissions became better understood. Although not well documented, N2O emissions from non-catalyst vehicles probably averaged 5-10 mg/mi (on the standard FTP test), while early generation TWC-equipped vehicles exceeded 100 mg/mi. As emissions control systems evolved to meet increasingly stringent criteria pollutant standards, N2O emissions also decreased.
Journal Article

Pilot Injection and Thermal Nitrogen Oxides: A Numerical and Experimental Study

2020-07-02
Abstract The main objective of this study is to investigate the effect of pilot injection mass and timing on main combustion and engine emissions. The experiments have been conducted on a single-cylinder diesel engine at fixed engine speed with various loads. In the computational fluid dynamics (CFD) simulations of the combustion, only a segment of the cylinder was considered. A numerical multiphase simulation of the internal nozzle flow delivered the required initial conditions for the spray primary breakup model. For the combustion the ECFM-3Z model was employed with a two-stage autoignition model. The measurements show that a pilot injection can reduce the nitrogen oxides (NOx) emissions at low engine load. With higher engine loads an increase in the NOx emission values was observed. The numerical investigation exhibited that the thermal nitrogen monoxide (NO) formation is a mixing-controlled process. The NO is formed generally in two different zones.
Journal Article

A Novel Approach to Test Cycle-Based Engine Calibration Technique Using Genetic Algorithms to Meet Future Emissions Standards

2020-08-11
Abstract Heavy-duty (HD) diesel engines are the primary propulsion systems in use within the transportation sector and are subjected to stringent oxides of nitrogen (NOx) and particulate matter (PM) emission regulations. The objective of this study is to develop a robust calibration technique to optimize HD diesel engine for performance and emissions to meet current and future emissions standards during certification and real-world operations. In recent years, California - Air Resources Board (C-ARB) has initiated many studies to assess the technology road maps to achieve Ultra-Low NOx emissions for HD diesel applications [1]. Subsequently, there is also a major push for the complex real-world driving emissions as the confirmatory and certification testing procedure in Europe and Asia through the UN-ECE and ISO standards.
Journal Article

Exhaust Emissions of an Engine Fuelled by Petrol and Liquefied Petroleum Gas with Control Algorithm Adjustment

2020-10-12
Abstract It has been shown that appropriate regulation of parameters of the gas supply system control algorithm allows to reduce the emission of selected components of the exhaust gas (carbon monoxide [CO], hydrocarbon [HC], and oxides of nitrogen [NOx]). The test engine met the Euro 6 standard on petrol and was equipped with an additional alternative multipoint fuelling system for multipoint injection (MPI) of the gaseous phase liquefied petroleum gas (LPG). The tests are comparative in nature. The first test to compare LPG petrol fuelling was carried out in the New European Driving Cycle (NEDC) where small differences in emissions were shown. The second part of the test compared emissions in the Worldwide harmonized Light vehicles Test Cycle (WLTC), wherein the initial phase there was a significant difference in emissions to the detriment of the gas supply. An innovative approach was therefore proposed to correct settings in the gas system control algorithm.
Journal Article

Combined Rule Based-Grey Wolf Optimization Energy Management Algorithm for Emission Reduction of Converted Plug-In Hybrid Electric Vehicle

2020-03-27
Abstract Conversion of the conventional vehicle (CV) into the plug-in hybrid electric vehicle (PHEV) is one of the promising solutions to improve transport sustainability and reduce outdoor air pollution of current vehicles running on the road. The performance of PHEV depends on an energy management strategy (EMS) of a hybrid powertrain. The article presents a combined rule based-grey wolf optimization (RGWO) energy management approach to improve performance of rule-based control and to reduce complexity and computational load of optimal control approach for the converted plug-in hybrid electric vehicle (CPHEV). A diesel vehicle converted to parallel hybrid topology is used for the study. Fuel consumption (FC) and emissions, viz., nitrous oxide (NOx) and particulate matter (PM) are considered as performance parameters.
Journal Article

Optimization of a 3D Combustion Bowl Geometry Using Response Surface Modeling

2020-11-30
Abstract Prediction of combustion system performance in the design stage via simulation tools can facilitate the reduction of iterations in the testing stage. Simulation tools can be used not only to predict the overall system performance for a certain set of hardware but can also be used to optimize the hardware. In this work, we intend to demonstrate the approach of Response Surface Modeling (RSM) to optimize the geometries of combustion systems from a performance and emission perspective. The Gaussian Process RSM algorithm, supplemented by Uniform Latin Hypercube (ULH) and Incremental Space Filler (ISF) Design of Experiment (DOE), has been used to arrive at an optimized piston bowl geometry for a Direct Injection (DI) diesel engine, having the potential to perform well both at the rated power and maximum torque operating points. Three principal piston bowl parameters have been identified for optimizing the geometry: (a) Bowl diameter, (b) Bowl depth, and (c) Bowl angle.
Journal Article

Hybrid Dynamic Modelling of Engine Emissions on Multi-Physics Simulation Platform

2021-02-12
Abstract This article introduces a hybrid dynamic modelling approach for the prediction of oxides of nitrogen (NOx) emissions for a Diesel engine, based on a multi-physics simulation platform coupling a one-dimensional (1D) air path model (GT-Suite) with in-cylinder combustion model (CMCL Stochastic Reactor Model [SRM] Engine Suite). The key motivation for this research was the requirement to establish a real-time stochastic simulation capability for emissions predictions early in engine development, which required the replacement of the slow combustion chemistry solver (SRM) with an appropriate surrogate model. The novelty of the approach in this research is the introduction of a hybrid approach to metamodelling that combines dynamic experiments for the gas path model with a zonal optimal space-filling design of experiments (DoEs) for the combustion model.
Journal Article

Reduction of Nitrogen Oxides by Injecting Nitric Oxide into a Hydrogen Engine: A Micro-kinetic Analysis

2021-03-03
Abstract The effect of injecting nitric oxide (NO) on reducing the emissions of NO from a hydrogen-fuelled spark-ignited internal combustion engine (H2-ICE) was studied using a detailed engine model considering in-cylinder turbulence and heat losses. Two different micro-kinetic models, one consisting of 307 reactions and 43 species and the other consisting of 126 reactions and 23 species, are used to predict the temporal evolution of the NO concentration in the exhaust of a single-cylinder four-stroke engine. Simulations show that a net reduction in the amount of NO can be obtained for high equivalence ratios (= 0.9), whereas a reduction is not predicted for a low equivalence ratio of 0.6. For both the equivalence ratios, the injection of NO does not impact the in-cylinder pressure and temperature profiles. It is deduced that the reduction in NO is primarily due to thermodynamic limitations.
Journal Article

Electrochemical Flue Gas Purification: A Review

2021-03-18
Abstract In this article, different techniques for the removal of pollutants from diesel exhaust gasses using an all-solid-state electrochemical reactor are reviewed. Different concepts have been suggested in the literature, and on the background of this, advantages and drawbacks of electrochemical flue gas purification are outlined in the review. Early research has focused mainly on the removal of either hydrocarbons or nitrogen oxides (NOx). For the latter, a very high current consumption has been stated in the literature. More recent research has shown that one type of electrochemical reactors can remove all pollutants from diesel exhaust gasses. However, the power consumption is still too high at present for the technology to be a feasible (around twice that of State-Of-the-Art (S-O-A) Selective Catalytic Reaction (SCR), which is around 1-2% of the total fuel consumption [1]).
Journal Article

Alcohol-Fueled Reactivity-Controlled Compression Ignition Combustion for Partial Replacement of Mineral Diesel in Internal Combustion Engines

2021-05-12
Abstract In this experimental study, a novel combustion technique, “reactivity-controlled compression ignition” (RCCI), has been investigated using alcohols acting as low-reactivity fuel (LRF) and mineral diesel acting as high-reactivity fuel (HRF). Combustion experiments were performed in a single-cylinder research engine at a constant engine speed of 1500 rpm and a low engine load of 3 bar brake mean effective pressure (BMEP). RCCI combustion is a practical low-temperature combustion (LTC) concept, which was achieved using three primary alcohols: Methanol, Ethanol, and Butanol in different premixed ratios (rp = 0.25, 0.50, and 0.75) with mineral diesel. Results showed a relatively superior performance and emissions characteristics of RCCI combustion compared to conventional compression ignition (CI) combustion. The influence of LRF was visible in RCCI combustion, which exhibited a more stable combustion compared to the baseline CI combustion.
Journal Article

Impact of Siloxanes in Biomethane on the Performance of a CNG Vehicle

2018-03-23
Abstract In this paper, the results of experiments to determine the effects of silicon-containing compounds in biogas on the performance of spark-ignited gas engines for use in CNG vehicles are presented. Initial research was performed on micro-CHP units, which have many features common with automotive engines, to identify engine components sensitive for silica deposition prior to investigating a practical CNG engine. The experiments on the micro-CHP units revealed that the catalyst was the most sensitive part for silica fouling, with strong impact on the reduction of NOx. With the insight gained from these experiments, an 9-week endurance test was performed on a light-duty CNG vehicle.
Journal Article

Diminishing Benefits of Federal Reformulated Gasoline (RFG) Compared to Conventional Gasoline (CG)

2018-12-20
Abstract The Federal reformulated gasoline (RFG) program originated with the 1990 Clean Air Act Amendments to address high ozone and air toxics levels in major urban areas. These areas include portions of 17 states and represent approximately 30% of the total U.S. gasoline volume. Initially, formulation changes were limited to addition of oxygen and reductions in benzene and fuel Reid vapor pressure (RVP) levels. These reformulations were intended to meet minimum emissions reduction targets for volatile organic compounds (VOCs), air toxics, and oxides of nitrogen (NOx) when compared to a 1990 baseline gasoline in a “1990’s technology” vehicle fleet. The United States Environmental Protection Agency (U.S. EPA) developed two computational models, the Simple Model in 1995 and the Complex Model in 1998, for use in demonstrating compliance with the regulations. This article reviews the derivation and evolution of the RFG program.
Journal Article

The Effect of NO2/NOx Ratio on the Performance of a SCR Downstream of a SCR Catalyst on a DPF

2019-06-14
Abstract Different aftertreatment systems consisting of a combination of selective catalytic reduction (SCR) and SCR catalyst on a diesel particulate filter (DPF) (SCR-F) are being developed to meet future oxides of nitrogen (NOx) emissions standards being set by the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). One such system consisting of a SCRF® with a downstream SCR was used in this research to determine the system NOx reduction performance using experimental data from a 2013 Cummins 6.7L ISB diesel engine and model data. The contribution of the three SCR reactions on NOx reduction performance in the SCR-F and the SCR was determined based on the modeling work. The performance of a SCR was simulated with a one-dimensional (1D) SCR model. A NO2/NOx ratio of 0.5 was found to be optimum for maximizing the NOx reduction and minimizing NH3 slip for the SCR for a given value of ammonia-to-NOx ratio (ANR).
X