Refine Your Search

Topic

Search Results

Journal Article

Driving Simulator Performance in Charcot-Marie-Tooth Disease Type 1A

2019-05-10
Abstract Introduction: This study evaluates driving ability in those with Charcot Marie Tooth Disease Type 1A, a hereditary peripheral neuropathy. Methods: Individuals with Charcot Marie Tooth Disease Type 1A (n = 18, age = 42 ± 7) and controls (n = 19; age = 35 ± 10) were evaluated in a driving simulator. The Charcot Marie Tooth Neuropathy Score version 2 was obtained for individuals. Rank Sum test and Spearman rank correlations were used for statistical analysis. Results: A 74% higher rate of lane departures and an 89% higher rate of lane deviations were seen in those with Charcot Marie Tooth Disease Type 1A than for controls (p = 0.005 and p < 0.001, respectively). Lane control variability was 10% higher for the individual group and correlated with the neuropathy score (rS = 0.518, p = 0.040), specifically sensory loss (rS = 0.710, p = 0.002) and pinprick sensation loss in the leg (rS = 0.490, p = 0.054).
Journal Article

Evaluation of Workload and Performance during Primary Flight Training with Motion Cueing Seat in an Advanced Aviation Training Device

2020-05-08
Abstract The use of simulation is a long-standing industry standard at every level of flight training. Historically, given the acquisition and maintenance costs associated with such equipment, full-motion devices have been reserved for advanced corporate and airline training programs. The Motion Cueing Seat (MCS) is a relatively inexpensive alternative to full-motion flight simulators and has the potential to enhance the fixed-base flight simulation in primary flight training. In this article, we discuss the results of an evaluation of the effect of motion cueing on pilot workload and performance during primary instrument training. Twenty flight students and instructors from a collegiate flight training program participated in the study. Each participant performed three runs of a basic circuit using a fixed-base Advanced Aviation Training Device (AATD) and an MCS.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

2018-12-05
Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Development of Framework for Lean Implementation: An Interpretive Structural Modeling and Interpretive Ranking Process Approach

2021-04-30
Abstract Today’s explosive condition of the market is compelling the manufacturing organizations to switch from traditional manufacturing (TM) to lean manufacturing (LM) to create a footprint in this competitive era. In this article, 16 critical success factors (CSFs) for LM implementation are identified through a vast literature review, the opinion of academicians and industry experts and interpretive structural modeling (ISM) is used to create interrelationships among the identified CSFs, and interpretive ranking process (IRP) rank these CSFs based on dominance with respect to performance dimensions. Leadership and management made the foundation of an ISM model while the training and people development have secured the first rank in the IRP model. Implementation of such ISM- and IRP-based models of CSF would give a clear understanding of these CSFs so that LM researchers, decision-makers, managers, and practitioners of LM will use their resources more efficiently.
Journal Article

Comparison Study of Malaysian Driver Seating Position in SAEJ1517 Accommodation Model

2019-04-08
Abstract A key element in an ergonomically designed driver’s seat in a car is the correct identification of driver seating position and posture accommodation. Current practice by the automotive Original Equipment Manufacturer (OEM) is to utilize the Society of Automotive Engineering (SAE) J1517 standard practice as a reference. However, it was found that utilizing such guidelines, which were developed based on the American population, did not fit well with the anthropometry and stature of the Malaysian population. This research seeks to address this issue by comparing the SAE J1517 Model against Malaysian preferred driving position. A total of 62 respondents were involved for the driver seating position and accommodation study in the vehicle driver’s seat buck mockup survey and measurements. The results have shown that the Malaysian drivers prefer to sit forward as compared to the SAE J1517 Model and have shorter posture joint angle.
Journal Article

A Willingness to Learn: Elder Attitudes toward Technology

2021-07-06
Abstract The ability of senior citizens as well as other members of the general population to engage in an effective manner with technology is of increasing importance as new and innovative technologies become available. While recognizing the challenges that technologies can have on different populations, the ability to interact successfully with new technologies will, for seniors, have important consequences that can affect their quality of life and those of their families in numerous and important ways. This study, building upon previous research, examines the major dimensions of decision-making regarding attitudes toward autonomous vehicle technologies (ATVs) and their use. The study utilized data from a study of senior citizens in the Dallas-Fort Worth (DFW) area and compared the results with a sample of graduate students from a local university.
Journal Article

A Pedal Map Setting Method for Considering the Controllability of Vehicle Speed

2021-02-26
Abstract To solve the problem that it is difficult for drivers to control the vehicle at low speed, a new setting scheme of pedal map is proposed to ensure that the vehicle has the speed controllability in the full speed range. In this scheme, based on obtaining the maximum and minimum driving characteristics of the vehicle and the driving resistance characteristics of the vehicle, the pedal map is divided into a sensitive area and insensitive area. In the insensitive area, acceleration hysteresis is formed, which ensures that the throttle is slightly fluctuated and has good speed stability. At the same time, the sensitive area of the accelerator pedal is formed far away from the driving resistance curve to ensure that the vehicle has a great acceleration ability. To verify the effectiveness of the proposed scheme, the data of a commercial vehicle is selected for the design of the pedal map, and the driver-vehicle closed-loop test based on the driving simulator is conducted.
Journal Article

Extending the Range of Data-Based Empirical Models Used for Diesel Engine Calibration by Using Physics to Transform Feature Space

2019-03-14
Abstract A new method that allows data-enabled (empirical) models, commonly used for automotive engine calibration, to extrapolate beyond the range of training data has been developed. This method used a physics-based system-level one-dimensional model to improve interpolation and allow extrapolation for three data-based algorithms, by modifying the model input (feature) space. Neural network, regression, and k-nearest neighbor predictions of engine emissions and volumetric efficiency were greatly improved by generating 736,281 artificial feature spaces and then performing feature selection to choose feature spaces (feature selection) so that extrapolations in the original feature space were interpolations in the new feature space. A novel feature selection method was developed that used a two-stage search process to uniquely select the best feature spaces for every prediction.
Journal Article

Finding Diverse Failure Scenarios in Autonomous Systems Using Adaptive Stress Testing

2019-12-18
Abstract Identifying and eliminating failure scenarios is critical in the development of autonomous vehicle (AV) systems. However, finding such failures through real-world vehicle-level testing is a difficult task as system disengagements and accidents are rare occurrences. Simulation approaches have been proposed to supplement vehicle-level testing and reduce the costs associated with operating large fleets of autonomous test vehicles. While one can run more vehicles in simulation than in the real world, applying traditional Monte Carlo sampling techniques to find failures still yields an unguided search and a large waste of computing resources. A more directed method than random sampling is needed to identify failure scenarios in a computationally efficient manner. Adaptive Stress Testing (AST) is a method that uses reinforcement learning (RL) paradigms to efficiently find failure scenarios in stochastic sequential decision-making systems.
Journal Article

Drive Right: Autonomous Vehicle Education through an Integrated Simulation Platform

2022-04-13
Abstract Autonomous vehicles (AVs) are being rapidly introduced into our lives. However, public misunderstanding and mistrust have become prominent issues hindering the acceptance of these driverless technologies. The primary objective of this study is to evaluate the effectiveness of a driving simulator to help the public gain an understanding of AVs and build trust in them. To achieve this aim, we built an integrated simulation platform, designed various driving scenarios, and recruited 28 participants for the experiment. The study results indicate that a driving simulator effectively decreases the participants’ perceived risk of AVs and increases perceived usefulness. The proposed methodologies and findings of this study can be further explored by auto manufacturers and policymakers to provide user-friendly AV design.
Journal Article

Real-Sim Interface: Enabling Multi-resolution Simulation and X-in-the-Loop Development for Connected and Automated Vehicles

2022-06-27
Abstract Connected and automated vehicles (CAVs) can bring safety, mobility, and energy benefits to transportation systems. Ideally, CAV applications would be fully evaluated and validated prior to real-world implementation. However, many technical challenges in both software and hardware hinder the process. To comprehensively evaluate all aspects of CAV applications, an integrated evaluation environment is needed with various simulation tools from different domains. In the current literature, there lacks a well-developed interface to enable multi-resolution simulation of vehicle, traffic, virtual environment, and hardware-in-the-loop (HIL) simulation. In this work, a modular and flexible interface is developed to enable multi-resolution vehicle and traffic co-simulation for CAV applications.
Journal Article

Evaluating the Relationship between Instrument Cluster Design, User Preference, and Driving Behavior among Demographic Groups

2020-10-29
Abstract Contemporary research has found differences between demographic groups in their stated instrument cluster component design preferences. For instance, elderly drivers prefer large icons and textual displays of information, while younger drivers preferred gauges to display information. The purpose of this study was to evaluate whether instrument clusters, designed for specific demographic groups, would facilitate safe driving behavior and solicit higher evaluation scores in their targeted demographics. Fifty participants, consisting of 30 elderly and 20 younger drivers (gender-balanced), completed a series of tasks to retrieve information from the instrument cluster while driving a high-fidelity simulator. Participants’ driving behavior, response time, subjective ratings, and a semi-structured post-experimental interview on different cluster designs were collected to evaluate each instrument cluster design.
Journal Article

Development of Data Mining Methodologies to Advance Knowledge of Driver Behaviors in Naturalistic Driving

2020-12-31
Abstract This article presents data mining methodologies designed to support data-driven, long-term, and large-scale research in the areas of in-vehicle monitoring, learning, and assessment of older adults’ driving behavior and physiological signatures under a set of well-defined driving scenarios. The major components presented in the article include the instrumentation of an easily transportable vehicle data acquisition system (VDAS) designed to collect multimodal sensor data during naturalistic driving, an ontology that enables the study of driver behaviors at different levels of integration of semantic heterogeneity into the driving context, and a driving trip segmentation algorithm for automatically partitioning a recorded real-world driving trip into segments representing different types of roadways and traffic conditions.
Journal Article

A New Approach of Antiskid Braking System (ABS) via Disk Pad Position Control (PPC) Method

2020-10-15
Abstract A classical antiskid brake system (ABS) is typically used to control the brake fluid pressure by creating repeated cycles of decreasing and increasing brake force to avoid wheel locking, causing the fluctuation of the brake hydraulic pressure and resulting in vibration during wheel rotation. This article proposes a new approach of skid control for ABS by controlling the disk pad position. This new approach involves using a modest control method to determine the optimal skid that allows the wheel to exert maximum friction force for decelerating the vehicle by shifting the brake pad position instead of modulating the brake fluid pressure. This pad position control (PPC) method works in a continuous manner. Therefore, no rapid changes are required in the brake pressure and wheel rotation speed. To identify the PPC braking performance, braking test simulations and experiments have been carried out.
Journal Article

Evaluation of Dynamic Wheel Alignment Audit System Performance

2019-09-03
Abstract Wheel alignment audit systems are used in vehicle service environments to identify vehicles which may benefit from a comprehensive evaluation on a precision static alignment measurement system. Non-contact dynamic wheel alignment audit systems acquire measurement data from vehicles in motion passing between sensors in an inspection lane. The dynamic nature of the moving vehicles introduces variables which are not present when auditing wheel alignment on a static vehicle. Measurement results are affected by changes in vehicle velocity, steering movement, suspension movement, floor surface conditions, tire sidewall profiles, and driver presence, as well as other variables.
Journal Article

A Brain Wave-Verified Driver Alert System for Vehicle Collision Avoidance

2021-04-30
Abstract Collision alert and avoidance systems (CAS) could help to minimize driver errors. They are instrumental as an advanced driver-assistance system (ADAS) when the vehicle is facing potential hazards. Developing effective ADAS/CAS, which provides alerts to the driver, requires a fundamental understanding of human sensory perception and response capabilities. This research explores the premise that external stimulation can effectively improve drivers’ reaction and response capabilities. Therefore this article proposes a light-emitting diode (LED)-based driver warning system to prevent potential collisions while evaluating novel signal processing algorithms to explore the correlation between driver brain signals and external visual stimulation. When the vehicle approaches emerging obstacles or potential hazards, an LED light box flashes to warn the driver through visual stimulation to avoid the collision through braking.
Journal Article

Design of a Wiper as Compliant Mechanisms with a Monolithic Layout

2020-10-02
Abstract The increasingly important need to design simpler structures, reducing the number of constituent components, has motivated the approach outlined in this article, which proposes an effective reengineering example of a product belonging to the automotive industry, combining the advantages offered by the compliant mechanisms with production opportunities linked to the use of additive manufacturing. Taking advantage of compliant mechanisms makes it possible to significantly improve the component’s production phase, leading to undoubted benefits on the supply chain and on product’s time to market, benefits made possible by exploiting the outstanding characteristic of additive manufacturing to produce already assembled multi-material structures.
Journal Article

Modelling and Simulation of Vehicle Suspension System with Variable Stiffness Using Quasi-Zero Stiffness Mechanism

2019-12-02
Abstract The dynamics and comfort of a vehicle closely depends on the stiffness of its suspension system. The suspension system of a vehicle always had to trade-off between comfort and performance of a vehicle; since for comfort a softer suspension is preferred which in turn decreases the aerodynamics and cornering performance and increases the ride height of the vehicle; whereas in stiffer suspension the ride height can be lowered, but forces due to bumps are transferred all the way up to the drivers cabin. This article aims to design a vehicle suspension model with variable stiffness using quasi-zero stiffness (QZS) mechanism and study its force-displacement characteristics and minimize the fundamental stiffness of the suspension system. The model developed uses the principle of negative stiffness to achieve low stiffness for the softer suspension system.
Journal Article

FSTire: An Open-Source Magic Formula Parameter Estimation Tool

2021-01-11
Abstract The Magic Formula (MF) Tire Model has received wide acclaim for vehicle dynamic simulations. However, it requires that the model parameters be determined for a particular tire, which in turn is a difficult task due to the large number of parameters involved. This work presents a study on the use of a Cascading Algorithm for determining the MF parameters, which is later packaged as a parameter estimation tool. Extending findings from previous research, the cascading algorithm aims to combine the strengths of both the Genetic Algorithm and Nelder-Mead Simplex (NMS) algorithm for the tire model fitting process. The algorithm performance is evaluated based on a total of 456 test datasets of six tires from four different manufacturers. The results show good fitting capabilities (86.5% of the fits have a coefficient of determination greater than 0.9) along with capturing the data trends accurately.
Journal Article

Motion Cueing Algorithm for a 9-DoF Driving Simulator: MPC with Linearized Actuator Constraints

2019-07-09
Abstract In times when automated driving is becoming increasingly relevant, dynamic simulators present an appropriate simulation environment to faithfully reproduce driving scenarios. A realistic replication of driving dynamics is an important criterion to immerse persons in the virtual environments provided by the simulator. Motion Cueing Algorithms (MCAs) compute the simulator’s control input, based on the motions of the simulated vehicle. The technical restrictions of the simulator’s actuators form the main limitation in the execution of these input commands. Typical dynamic simulators consist of a hexapod with six degrees of freedom (DoF) to reproduce the vehicle motion in all dimensions. Since its workspace dimensions are limited, significant improvements in motion capabilities can be achieved by expanding the simulator with redundant DoF by means of additional actuators.
X