Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
X