Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
Technical Paper

Possible Influence of High Injection Pressure on Diesel Fuel Stability: A Review and Preliminary Study

2009-06-15
2009-01-1878
Recent developments in diesel engines and fuel injection equipment combined with the change to ULSD and bio-blends have resulted in increased reports regarding deposits within injectors and filters. A review of known fuel degradation mechanisms and other relevant chemistries suggests the effects of high pressure and high shear environments should be examined as the most probable causes of increasing deposit formation. Existing fuel quality tests do not correlate with reported fouling propensity. Analytical studies have shown that there are only subtle chemical changes for the materials within the standard diesel boiling range. The implications for further scientific study are discussed.
X