Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

Complex System Engineering Simulation through Co-Simulation

2014-04-01
2014-01-1106
Many of today's advanced simulation tools are suitable for modeling specific systems, but they provide rather limited support for automated model building and management. The diverse tools available for modeling different components of a vehicle make it all the more challenging to comprehend their integration and interactions and analyze the complete system. In addition, the complexities and sizes of the models require a better use of computing resources, such as multicore or remote processing, to greatly reduce the simulation time. In this paper we describe how modern software techniques can support modeling and design activities, with the objective to create system models quickly by assembling them in a “plug-and-play” architecture. System models can be integrated, co-simulated, and reused regardless of the environment in which they are developed, and their simulation results can be consolidated for analysis into a single tool.
X