Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

NOx Adsorber Catalysts with Improved Desulfation Properties and Enhanced Low-Temperature Activity

2009-04-20
2009-01-0283
NOx adsorber catalyst technology has been successfully applied on diesel vehicles to enable them to satisfy stringent NOx emission regulations. One limitation of this technology is the requirement to regularly desulfate the adsorber to maintain high NOx conversion efficiency. In addition to adding significant engine and calibration complexity, these high temperature desulfation events accelerate the thermal degradation of the exhaust system components. Minimization of the severity and the frequency of the desulfation events is highly desirable. Laboratory studies to understand desulfation processes and to identify improved NOx Adsorber washcoat compositions are described. These studies led to a new generation of NOx adsorber catalysts with reduced desulfation temperatures, faster desulfation rates and enhanced low-temperature activity. The new generation of catalysts also enabled the potential for PGM thrifting, especially for applications with low engine- out NOx emissions.
Technical Paper

Development of Thermally Durable Cu/SCR Catalysts

2009-04-20
2009-01-0899
Selective catalytic reduction (SCR) of NOx by NH3 is under intensive development as a technology to enable diesel engines to meet stringent NOx emission regulations. Cu/zeolite SCR catalysts are leading candidates because of their ability to catalyze NOx reduction at the low temperatures encountered on many diesel vehicles. However, both engine evaluation and laboratory studies indicated that commonly available Cu/zeolite SCR catalysts did not have sufficient thermal stability to maintain performance during the full useful life of a vehicle (with steady-state NOx conversion decreasing ~ 10% over 64 hours of hydrothermal aging at 670 °C). Characterization of aged Cu/zeolite catalysts revealed that the loss of zeolite acidity was the main deactivation mechanism; while the zeolite support maintained its framework structure and surface area after aging. Improvement of the hydrothermal stability of the acid sites resulted in a new generation of SCR catalysts.
Journal Article

Factors Affecting Three-Way Catalyst Light-Off: A Simulation Study

2014-04-01
2014-01-1564
Achieving early catalyst light-off is crucial if stringent emissions standards are to be met; if light-off is late, the emissions limit could be exceeded even before the catalyst starts to work. This paper presents a detailed simulation study of the factors affecting the light-off of a TWC. Simulation is not just faster and cheaper than vehicle testing, it also enables more insight into the factors affecting catalyst performance to be obtained. For example, changing the substrate (cell density and wall thickness) affects the rates of heat and mass transport, as well as the thermal mass of the catalyst. In a vehicle test, all three factors are changed at once, but with a simulation each of these factors can implemented one at time to enable the relative importance of these factors to be determined.
X