Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combustion Performance of Methane Fermentation Gas with Hydrogen Addition under Various Ignition Timings

2022-01-09
2022-32-0043
Hydrogen (H2) addition is widely used for natural gas combustion to improve the engine efficiency. However, less attention was paid on the various ignition timings for the maximum brake torque (MBT) and brake thermal efficiency (BTE). In order to check the ignition timing effect, experiments were performed in a spark ignition engine with engine speed fixed on 1500 revolutions per minute (rpm). Firstly, CH4 was only used for combustion with excess air ratio (λ) changing from 0.8 to 1.4. Then, co-combustion of 50 vol% CH4 and 50 vol% CO2 was checked to simulate methane fermentation gas. Finally, H2 was added with volume percentage varying from 5% to 20%. Among these discussions, torque, brake mean effective pressure (BMEP), BTE and cylinder pressure were evaluated. Based on the results, high efficiency can be achieved by advancing the ignition timing with H2 addition at λ=1.4. However, with H2 addition, the ignition timing should be retarded to obtain higher BTE.
Technical Paper

Ignition Delays of DME and Diesel Fuel Sprays Injected by a D.I. Diesel Injector

1999-10-25
1999-01-3600
Among the alternative fuels, dimethyl ether (DME), one of the oxygenated fuels, attracts attention as an alternative fuel for the Diesel engine since the properties of the DME are fitted to the Diesel engine combustion and the know-how development has been made of the mass production of the DME from a natural gas. In this study, experiments were performed of ignition characteristics of the DME and Diesel fuel sprays injected by a D.I. Diesel injector into a high-pressure, high-temperature vessel. The fuel injection was made by a Bosch type injection system. A schlieren optical system was adopted for visualizing the ignition process as well as the vaporization process of the DME and Diesel fuel sprays. The ignition delay was measured by using a photo-sensor which had a sensitivity in the wavelength range from visible to ultraviolet. Pressure and temperature of the ambient air and the oxygen concentration of the ambient air were changed as experimental parameters.
X