Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improved Diesel Particulate Filter Regeneration Performance Using Fuel Soluble Additives

1999-10-25
1999-01-3562
Interest has been growing in many countries in the potential use of diesel particulate filters (DPF). This type of after treatment technology has been shown to make very significant reductions in both the mass of particulate emitted in diesel exhaust gas, and also in the number of fine particulates, which have been linked in recent years with concerns for human health. Work carried out during a development programme investigating the capability of fuel soluble metallic additives to assist DPF regeneration, indicated superior performance from a novel combination of metals in fuel soluble form. Earlier work showed that a fuel soluble combination of organo-metallic additives based on sodium and strontium gave very effective regeneration characteristics, and was capable of burning out carbon at temperatures from about 160°C.
Technical Paper

Additive Based Regeneration Adjusted for Indian Low Load Driving Profiles

2017-01-10
2017-26-0144
Emissions of diesel engine are considered to be harmful to health especially particulate emissions. Therefore, the introduction of diesel particulate filters (DPF) were successively forced by government due to reducing the emission limits to a level where inner engine measures are not sufficient anymore. To limit additional fuel consumption by increasing backpressure over the DPF, the collected soot has to be regenerated continuously or discrete by active regeneration. Active regeneration is usually realized by injecting additional fuel either due to the engines injection system into the combustion chamber (late post injection) or via an additional fuel injection device in the exhaust line. This enables increasing exhaust temperature and / or an exothermic reaction in the diesel oxidation catalyst (DOC) of the aftertreatment system.
X