Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Finite Element Modeling and Development of the Deformable Featureless Headform and Its Application to Vehicle Interior Head Impact Testing

1996-02-01
960104
This paper describes the steps and procedures involved in the development, calibration, and validation of a finite element model of a deformable featureless headform (Hybrid III head without nose). Development efforts included: a headform scan to verify geometric accuracy, quantification of general-purpose construction of the finite element model from the scanned data, viscoelastic parameters for the constitutive model definition of the headform skin, and models of drop tests with impact speeds of 9.775, 14.484, 19.312, and 24.140 km/h (6.074, 9, 12, and 15 mph). The predictions of all pertinent headform responses during the calibration were in excellent agreement with related experiments. The validity of the headform model and the headform impact methodology were verified in both component and full vehicle environments. This was accomplished through comparisons of finite element simulations with tests of the headform responses at 24.140 km/h (15 mph) impact.
Technical Paper

A COMPARATIVE ANALYSIS OF VEHICLE-TO-VEHICLE AND VEHICLE -TO-RIGID FIXED BARRIER FRONTAL IMPACTS

2001-06-04
2001-06-0031
The relationship between designing for both rigid fixed barrier (RFB) and vehicle-to-vehicle tests is a topical area of research. Specifically, vehicle-to-vehicle compatibility has been a topic of keen interest to many researchers, and the interplay between the two aspects of design is presently addressed. In this paper, the studied vehicles for potential vehicle-to-vehicle impacts included: sport utility vehicles (SUVs), Pickups (PUs), and passenger cars. The SUV/PU-to-Car frontal impact tests were compared to those obtained from vehicle-to-rigid fixed barrier frontal impacts. Acceleration pulses at the B-pillar/rocker as well as dash and cabin intrusions were monitored and compared. Additionally, the energy distributions in SUV/PU-to-Car crash tests were compared to those of single vehicle-to-RFB tests. It was concluded from the analysis that vehicle weight and front-end stiffness were not always the overriding factors dictating performance.
X