Refine Your Search

Topic

Author

Search Results

Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

2014-04-01
2014-01-1073
The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---

2014-04-01
2014-01-1066
The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Journal Article

An Application of Model Based Combustion Control to Transient Cycle-by-Cycle Diesel Combustion

2008-04-14
2008-01-1311
From the viewpoint of the global warming restraint, reduction of exhaust emissions from diesel engine is urgent demand. However, it needs further development in combustion control besides after treatment system. Larger amount of EGR (Exhaust Gas Recirculation) is effective to reduce NOx emission. On the other hand, in-cylinder physical conditions greatly influence on self-ignition and combustion process, especially low O2 fraction charged gas owing to excessive EGR causes misfire. A drastic solution for this problem, fuel injection timing should be optimally manipulated based on predicted ignition delay period before actual injection. For this purpose, Toyota has developed a model based diesel combustion control concept to avoid the misfire and to keep low emission combustion includes in transient condition.
Journal Article

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-04-14
2008-01-1189
The effects of an increasing boost pressure, a high EGR rate and a high injection pressure on exhaust emissions from an HSDI (High Speed Direct Injection) diesel engine were examined. The mechanisms were then investigated with both in-cylinder observations and 3DCFD coupled with ϕT-map analysis. Under a high-load condition, increasing the charging efficiency combined with a high injection pressure and a high EGR rate is an effective way to reduce NOx and soot simultaneously, which realized an ultra low NOx of 16ppm at 1.7MPa of IMEP (Indicated Mean Effective Pressure). The flame temperature with low NOx and low soot emissions is decreased by 260K from that with conventional emissions. Also, the distribution of the fuel-air mixture plot on a ϕT-map is moved away from the NOx and soot formation peninsula, compared to the conventional emissions case.
Journal Article

A Study of Gasoline Lift-off Combustion in a Spark Ignition Engine

2008-04-14
2008-01-0140
The aim of this study is to demonstrate the concept of gasoline lift-off spray combustion in which the burning velocity is controlled by the rate of mixture supply to the flame zone. With this concept, gasoline fuel is injected under high pressure to promote atomization, evaporation and mixing with the air, thereby quickly forming a homogenous mixture extending to the flame downstream of the spray. As a result, the injected fuel is burned sequentially. In this study, a constant-volume combustion vessel was used to visualize and analyze spray combustion. The experimental results made clear the effects of the initial conditions (e.g., injection pressure and nozzle hole diameter) and the ambient conditions (e.g., temperature and pressure) on the flame lift-off length and soot formation. In addition, the conditions facilitating this combustion concept were examined by conducting combustion simulations with the KIVA-3V code, taking into account the detailed chemical reaction mechanisms.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Journal Article

Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement

2015-11-17
2015-32-0711
Primary work is to investigate premixed laminar flame propagation in a constant volume chamber of iso-octane/air combustion. Experimental and numerical results are investigated by comparing flame front displacements under lean to rich conditions. As the laminar flame depends on equivalence ratio, temperature, and pressure conditions, it is a main property for chemical reaction mechanism validation. Firstly, one-dimensional laminar flame burning velocities are predicted in order to validate a reduced chemical reaction mechanism. A set of laminar burning velocities with pressure, temperature, and mixture equivalence ratio dependences are combined into a 3D-CFD calculation to compare the predicted flame front displacements with that of experiments. It is found that the reaction mechanism is well validated under the coupled 1D-3D combustion calculations. Next, lean experiments are operated in a SI engine by boosting intake pressure to maintain high efficiency without output power penalty.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
Technical Paper

Combustion Improvement for Reducing Exhaust Emissions in IDI Diesel Engine

1998-02-23
980503
Means for reducing the particulate matter (PM) from swirl chamber type diesel engines were searched out, and the reducing mechanisms were examined using an optically accessible engine. The following points were clarified in this study. 1. At light load, the suppression of the initial injection rate reduces PM, because SOF is reduced by the change in ignition point and smoke is reduced by the retarded flowout of the dense soot from the swirl chamber 2. Under medium and high load conditions, the main cause of the exhaust smoke is fierce spray-wall impingement which leads to fuel adhesion on the wall and the stagnation of a rich fuel-air mixture. 3. Enlarging swirl chamber volume ratio suppresses the formation of dense soot in the swirl chamber. In the main chamber, however, the soot oxidization becomes insufficient due to the mixing effect reduced by the essentially decreased chamber depth. 4.
Technical Paper

Photographic and Three Dimensional Numerical Studies of Diesel Soot Formation Process

1990-10-01
902081
Soot formation process was examined by high speed photographs, using a single cumbustion diesel engine with a transparent swirl chamber. Fuel-air mixture and flames, and soot clouds were visualized by the schlieren method and the back-illuminated method, respectively. A three dimensional simulation program with soot formation and oxidation models was developed to clarify diesel soot formation processes. The models consist of several models previously proposed and partly improved in this study. Good agreement was obtained between calculated and experimental results. The following points were clarified through observation and numerical studies: (1) The main soot area is considerably smaller than luminous flame area, especially in the initial soot formation process. (2) The main soot cloud first appears in the tip region of fuel-air mixture, downstream of ignition position a few submilliseconds after the ignition.
Technical Paper

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation

2006-11-13
2006-32-0034
To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 1: Comparison of Combustion and Exhaust Emission Characteristics among Representative Diesel Fuels

1998-10-19
982494
Combustion and exhaust emission characteristics were compared among three representative diesel fuels called “Base (corresponding to a Japanese market fuel)”, “Improved” and Swedish “Class-1” using both a modern small and an optically accessible single-cylinder DI diesel engines. In these tests, the relative amount of PM collected in the exhaust was “Base” >“Class-1” >“Improved” at almost all of the operating conditions. This means that “Class-1” generated more PM than “Improved”, even though “Class-1” has significantly lower distillation temperatures, aromatic content, sulfur, and density compared with “Improved”. There was little difference in combustion characteristics such as heat release rate pattern, mixture formation and flame development processes between these two fuels. However, it was found that “Class-1” contained more branches in the paraffin fraction and more naphthenes.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

A New Dynamic Combustion Control Method Based on Charge Oxygen Concentration for Diesel Engines

2003-10-27
2003-01-3181
The introduction of a large amount of EGR gas into cylinders is effective for reducing exhaust emissions in diesel engines. As combustion characteristics under the condition of higher EGR rate are highly influenced by the amount of intake charge gas and its composition. It requires a precise control method for preventing the increase of NOx and particulate matter (PM) in spite of the transient conditions of supercharging and tolerance of turbocharger. In this study, a new control method was developed based on the observed oxygen concentration of charge gas and excess air ratio (stands for the oxygen concentration of burnt gas) which are the main physical factors governing NOx and PM formation. In a conventional method, the intake airflow rate is controlled to meet a target value determined in advance in the stationary engine operating condition.
X