Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Ethane Enrichment on Diesel-Methane Dual-Fuel Combustion

2020-04-14
2020-01-0305
Over the past few years, the growing concerns about global warming and efforts to reduce engine-out emissions have made the dual-fuel (DF) engines more popular in marine and power industries. The use of natural gas as an alternative fuel in DF engines has both the environmental and economic advantages over the conventional diesel combustion. However, the misfire phenomenon at lean conditions limits the operating range of DF combustion and causes emissions of unburned hydrocarbon (UHC) and unburned methane (methane-slip) in the environment. The greenhouse effect of methane is considered 28 times greater than CO2 over a 100-year perspective, which raises concerns for the governments and marine engine manufacturers. In efforts to reduce the UHC and methane-slip from DF engines, this study discusses ethane enrichment of diesel-methane DF combustion in a full-metal single-cylinder research engine under lean condition (λGFB = ~2.0) while keeping the total-fuel energy rather constant.
Technical Paper

Effect of Alternative Fuels on Marine Engine Performance

2019-12-19
2019-01-2230
Marine transportation sector is highly dependent on fossil-based energy carriers. Decarbonization of shipping can be accomplished by implementing biobunkers into an existing maritime fuel supply chain. However, there are many compatibility issues when blending new biocomponents with their fossil-based counterparts. Thus, it is of high importance to predict the effect of fuel properties on marine engine performance, especially for new fuel blends. In the given work, possible future solutions concentrated on liquid fuels are taken into account. Under consideration are such fuels as biodiesel (FAME), hydrotreated vegetable oil (HVO), straight vegetable oil (SVO), pyrolysis oil, biocrude, and methanol. Knowledge about the behavior of new fuel in an existing engine is notably important for decision makers and fuel producers. Hence, the main goal of the present work is to create a model, which can predict the engine performance from the end-user perspective.
X