Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

Evaluation of a Portable Micro-Dilution Tunnel Particulate Measurement System

2005-10-24
2005-01-3789
The Federal Test Procedure (FTP) for heavy-duty engines requires the use of a full-flow tunnel based constant volume sampler (CVS) which is costly to build and maintain, and requires a large workspace. A portable micro-dilution system that could be used for measuring on-board, in use emissions from heavy duty vehicles would be an inexpensive alternative compared to a full-flow CVS tunnel, as well as requiring significantly less workspace. This paper evaluates such a portable particulate matter measuring system. This micro-dilution tunnel operates on the same principle as a full-flow tunnel, however dilution ratios can be more easily controlled with the micro dilution system. The dilution ratios for the micro-dilution system were maintained at least four to one, as per ISO 8178 requirements, by measuring the mass flow rates of the dilution air and dilute exhaust.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
X