Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Multi-Mode Controller Design for Active Seat Suspension with Energy-Harvesting

2020-04-14
2020-01-1083
In this paper, a multi-mode active seat suspension with a single actuator is proposed and built. A one-DOF seat suspension system is modelled based on a quarter car model of commercial vehicle with an actuator which is comprised of a DC motor and a gear reducer. Aiming at improving ride comfort and reducing energy consumption, a multi-mode controller is established. According to the seat vertical acceleration and suspension dynamic travel signals, control strategies switch between three modes: active drive mode, energy harvesting mode and plug breaking mode.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Technical Paper

Automated Vehicle Path Planning and Trajectory Tracking Control Based on Unscented Kalman Filter Vehicle State Observer

2021-04-06
2021-01-0337
For automated driving vehicles, path planning and trajectory tracking are the core of achieving obstacle avoidance. Real-time external environment perception and vehicle state monitoring play the important role in the decision-making of vehicle operation. Sensor measuring is an important way to obtain vehicle state parameters, but some parameters cannot be measured due to sensor cost or technical reasons, such as vehicle lateral velocity and side-slip angle. This disadvantage will adversely affect the monitoring of vehicle self-condition and the control of vehicle running, even it will lead to erroneous decision-making of vehicles. Therefore, this paper proposes an automated driving path planning and trajectory tracking control method based on Kalman filter vehicle state observer. Some of vehicle state data can be measured accurately by sensors.
Technical Paper

Neural-Network-Based Suspension Kinematics and Compliance Characteristics and Its Implementation in Full Vehicle Dynamics Model

2022-03-29
2022-01-0287
Suspension kinematics and compliance strongly influence the handling performance of the vehicle. The kinematics and compliance characteristics are determined by the suspension geometry and stiffness of suspension bodies and elastic components. However, it is usually inefficient to model all the joints, bushings, and linkage deformation in a full vehicle model. By transforming the complex modeling problem into a data-driven problem tends to be a good solution. In this research, the neural-network-based suspension kinematics and compliance model is built and implemented into a 17 DOF full vehicle model, which is a hybrid model with state variables expressed in the global coordinate system and vehicle coordinate system. The original kinematics and compliance characteristics are derived from multibody dynamics simulation of the suspension system level.
Technical Paper

Adaptive Control Strategy for Complex Starting Conditions of Vehicles with Dry Dual Clutch Transmission

2022-03-29
2022-01-0284
For vehicles equipped with dry dual clutch transmission, due to the diversity of starting conditions, it is a nontrivial task for control strategy to meet the requirements of all kinds of complex starting conditions, which is easy to cause large starting shock and serious clutch wear. Therefore, it is proposed in this paper an adaptive control strategy for complex starting conditions by adjusting two clutches to participate in the starting process at the same time. On the basis of establishing the transmission system model and clutch model, the starting conditions are identified in terms of starting speed, road adhesion and driver's intention, in which the driver's intention is identified by fuzzy reasoning model. Based on the identification of starting conditions and considering the safety principle, it is selected the appropriate starting gear and clutch combination mode, and adjusted the combination speed of the two clutches to carry out an adaptive control strategy.
Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
X