Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of Predictive Models and Prediction of Process Parameters for Wire Electrical Discharge Machining of Monel 400

2022-12-23
2022-28-0491
The numerous applications and desirable attributes of Monel 400 urge many researchers to undertake multiple systematic evaluation studies for diverse manufacturing operations. Because of their exceptional mechanical qualities and great corrosion resistance, nickel-based alloys, particularly Monel 400, are increasing in popularity in a variety of applications. Because of their tendency for rapid work hardening and low thermal conductivity, these materials are particularly difficult to machine using traditional manufacturing techniques. Advanced material removal methodologies have been applied to eliminate such drawbacks and are regarded as a suitable alternative approach to traditional machining processes. Based on the Electrical Discharge Machining technique, Wire Electrical Discharge Machining was developed, which a sophisticated machining technology is used to machine hard materials with complex forms in any electrically conducting materials.
Technical Paper

Neural Network Model for Machinability Investigations on CNC Turning of AA5052 for Marine Applications with MQL

2022-12-23
2022-28-0515
Aluminium alloys are attracting importance in various engineering industries because of their exceptional characteristics such as strength, resistance to oxidation etc., AA5052 is an alloy that categorized under Al-Mg series, commonly adopted in anti-rust applications, especially for desalination applications because of its good corrosion resistance in seawater at temperatures up to 125°C, low cost, good thermal conductivity, and non-toxicity of its corrosion products. Minimum Quantity Lubrication (MQL) is one of the approaches that are economically affordable and also eco-friendly used in various machining operations. This present exploration details the investigation CNC turning of AA5052 alloy with conventional Tungsten Carbide (WC) tool inserts under MQL conditions. There are two different natural cutting fluids were engaged such as live oil and coconut oil.
Technical Paper

Development of Adaptive Neuro Fuzzy Inference System Model for CNC Milling of AA5052 Alloy with Minimum Quantity Lubrication by Natural Cutting Fluid

2022-12-23
2022-28-0511
In view of the improvements in manufacturing sectors, which are an important component of any economy’s growth, there is a significant need for new and advanced materials, particularly alloy materials need to be analysed and investigated so that new technologies may be effectively utilized. Materials with low weight and high strength, such as aluminium alloys, are recommended for a variety of applications that require both strength and corrosion resistance, such as marine applications and high-temperature applications. Aluminium alloy Al 5052, a nonferrous material with outstanding properties is an Al-Mg alloy with high thermal conductivity and corrosion products that are non-toxic. Minimum Quantity Lubrication (MQL) is a cost-effective and environmentally friendly method of lubrication employed in a variety of machining processes. The investigation of CNC milling of AA5052 alloy with standard Tungsten Carbide (WC) tool inserts with MQL settings are detailed in this paper.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Inconel 625 for Automobile Applications

2023-11-10
2023-28-0148
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes.
Technical Paper

Design, Modelling and Simulation of Adaptable Marine and Terrestrial Cleaner

2023-11-10
2023-28-0165
An oil spill refers to the accidental or deliberate release of petroleum or other petroleum-based products into the environment. These spills can occur on land or in water bodies, such as oceans, rivers, or lakes, and can have devastating impacts on the environment, wildlife, and human health. Oil spills can harm aquatic and terrestrial ecosystems by contaminating water and soil, and by affecting the food chain. They can also cause economic losses, such as the loss of fisheries, tourism, and property values. Cleaning up oil spills can be a difficult and expensive process, and the effectiveness of the response can depend on various factors, such as the type and amount of oil spilled, weather conditions, and proximity to sensitive ecosystems. Preventing oil spills is critical to minimizing their impacts.
Technical Paper

Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames

2023-11-10
2023-28-0088
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
Technical Paper

Evolution of Regression and Neural Network Models on Wire Electrical Discharge Machining of Nickel Based Superalloy

2023-11-10
2023-28-0078
In addition to traditional methods, there are also non-traditional techniques that can be used to overcome the challenges of conventional metal working. One such technique is wire electrical discharge (WEDM). This type of advanced manufacturing process involves making complex shapes using materials. Utilizing intelligent tools can help a company meet its goals. Nickel is a hard metal to machine for various applications such as nuclear, automobile and aerospace. Due its high thermal conductivity and strength, traditional methods are not ideal when it comes to producing components using this material. This paper aims to provide a comprehensive analysis of the various steps in the development of a neural network model for the manufacturing of Inconel 625 alloy which is used for specific applications such as exhaust couplings in sports motor vehicle engines. The study was conducted using a combination of computational and experimental methods.
X