Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Disinfectants for Spacecraft Applications: An Overview

1991-07-01
911516
In-flight contamination control has been an important concern of NASA since the first manned missions. Previous experience has shown that uncontrolled growth of bacteria and fungi can have a detrimental effect on both the health of the crew and the proper operation of flight hardware. It is therefore imperative to develop a safe, effective method of microbial control. Spacecraft application dictates a more stringent set of requirements for biocide selection than is usually necessary for terrestrial situations. Toxicity of the biocide is the driving factor for disinfectant choice in spacecraft. This concern greatly reduces the number and types of chemical agents that can be used as disinfectants. Currently, four biocide candidates (hydrogen peroxide, quaternary ammonium compounds, iodine, glutaraldehyde) are being evaluated as potential surface disinfectants for Space Station Freedom.
Technical Paper

Immobilized Antimicrobials for the Enhanced Control of Microbial Contamination

2003-07-07
2003-01-2405
The active control of problematic microbial populations aboard spacecraft, and within future lunar and planetary habitats is a fundamental Advanced Life Support (ALS) requirement to ensure the long-term protection of crewmembers from infectious disease, and to shield materials and equipment from biofouling and biodegradation. The development of effective antimicrobial coatings and materials is an important first step towards achieving this goal and was the focus of our research. A variety of materials were coated with antibacterial and antifungal agents using covalent linkages. Substrates included both granular media and materials of construction. Granular media may be employed to reduce the number of viable microorganisms within flowing aqueous streams, to inhibit the colonization and formation of biofilms within piping, tubing and instrumentation, and to amplify the biocidal activity of low aqueous iodine concentrations.
Technical Paper

Space Station Microscopy: Beyond the Box

1993-07-01
932143
Microscopy aboard Space Station Freedom poses many unique challenges for in-flight investigations. Disciplines such as materials processing, plant and animal research, human research, environmental monitoring, health care, and biological processing have diverse microscope requirements. The typical microscope not only does not meet the comprehensive needs of these varied users, but also tends to require excessive crew time. To assess user requirements, a comprehensive survey was conducted among investigators with experiments requiring microscopy. The survey examined requirements such as light sources, objectives, stages, focusing systems, eye pieces, video accessories, etc. The results of this survey and the application of an Intelligent Microscope Imaging System (IMIS) may address these demands for efficient microscopy service in space.
Technical Paper

Effects of Refrigerating Preinoculated Vitek Cards on Microbial Physiology and Antibiotic Susceptibility

1992-07-01
921214
Reference cultures of 16 microorganisms obtained from the American Type Culture Collection and four clinical isolates were used in standardized solutions to inoculate 60 cards for each test strain. A set of three ID and three susceptibility cards was processed in the Vitek AutoMicrobic System (AMS) immediately after inoculation. The remaining cards were refrigerated at 4°C, and sets of six cards were removed and processed periodically for up to 17 days. The preinoculated AMS cards were evaluated for microorganism identification, percent probability of correct identification, length of time required for final result, individual substrate reactions, and antibiotic minimal inhibitory concentration (MIC) values. Results indicate that 11 of the 20 microbes tested withstood refrigerated storage up to 17 days without detectable changes in delineating characteristics. MIC results appear variable, but certain antibiotics proved to be more stable than others.
Technical Paper

Microbiology Standards for the International Space Station

1995-07-01
951682
The Crew Health System (CHeCS) plays a pivotal role in monitoring the life-support activities that maintain space station environmental quality and crew safety. Sampling hardware will be used in specific protocols to monitor the microbial dynamics of the closed spacecraft environment. NASA flight experience, ground-based studies, consultations with clinical and environmental microbiologists, and panel discussions with experts in engineering, flight-crew operations, microbiology, toxicology, and water quality systems all have been integral to the revision of in-flight microbial standards. The new standards for air and internal surfaces differentiate between bacterial and fungal loads, unlike previous standards that relied on total microbial counts. Microorganisms that must not be present in air or water or on surfaces also are listed.
Technical Paper

Microbiological Analysis of Water in Space

1995-07-01
951683
One of the proposed methods for monitoring the microbial quality of the water supply aboard the International Space Station is membrane filtration. We adapted this method for space flight by using an off-the-shelf filter unit developed by Millipore. This sealed unit allows liquid to be filtered through a 0.45 μm cellulose acetate filter that sits atop an absorbent pad to which growth medium is added. We combined a tetrazolium dye with R2A medium to allow microbial colonies to be seen easily, and modified the medium to remain stable over 70 weeks at 25°C. This hardware was assembled and tested in the laboratory and during parabolic flight; a modified version was then flown on STS-66. After the STS-66 mission, a back-up plastic syringe and an all-metal syringe pump were added to the kit, and the hardware was used successfully to evaluate water quality aboard the Russian Mir space station.
Technical Paper

Results on Reuse of Reclaimed Shower Water

1986-07-14
860983
A microgravity whole body shower (WBS) and a waste water recovery system (WWRS) were used in a closed loop test at the Johnson Space Center. The WWRS process involved chemical pretreatment, phase change distillation and post-treatment. A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem (TIMES) was used for distillation after pretreatment and the post-treatment was accomplished with activated carbon, mixed ion exchange resin beds and microbial check valve (MCV) iodine bactericide dispensing units. The purposes of this test were to evaluate a NASA approved Shuttle soap for whole body showering comfort; evaluate the effects of the shower water on the WBS and the TIMES; and evaluate purification qualities of the recovered water in a closed loop operation.
Technical Paper

Inflight Microbial Analysis Technology

1987-07-01
871493
This paper provides an assessment of functional characteristics needed in the microbial water analysis system being developed for Space Station. Available technology is reviewed with respect to performing microbial monitoring, isolation, or identification functions. An integrated system composed of three different technologies is presented.
Technical Paper

Development Program for a Zero-G Whole Body Shower

1987-09-01
871522
In 1985, the Man-Systems Division at the Johnson Space Center initiated a program for the development of a whole body shower suitable for operation in a microgravity environment. Supporting this development effort has been a systematic research program focused on four critical aspects of the design (i.e., human factors engineering, biomedical, mechanical, and electrical) and on the interfaces between the whole body shower system and the other systems to be aboard the Space Station (e.g., the water reclamation and air revitalization systems). A series of tests has been conducted to help define the design requirements for the whole body shower. Crew interface research has identified major design parameters related to enclosure configurations, consumable quantities, operation timelines, displays and controls, and shower and cleanup protocols.
Technical Paper

Microbiology Operations and Facilities Aboard Restructured Space Station Freedom

1992-07-01
921213
With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.
X