Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies: Part II - Development of the Small Female Frangible Abdomen

1990-10-01
902317
The Frangible Abdomen is a crushable Styrofoam insert for the abdominal region of the Hybrid III family of dummies, which has biofidelity, and assesses the occurrence of submarining and its risk of injury. It was first developed for the mid-sized male Hybrid III dummy. This paper describes the design of the Frangible Abdomen for the small female Hybrid III dummy, and how to use it to assess the occurrence and the risk of injury from submarining. The force-deflection properties of the mid-sized male insert were scaled to the small female dimension using equal stress/equal velocity scaling. Sled tests were run to compare the kinematic and dynamic performance of the baseline small female Hybrid III dummy with the same dummy modified to incorporate the Frangible Abdomen. The kinematic and submarining performance of the small female Hybrid III dummy was unchanged by the addition of the Frangible Abdomen. The Frangible Abdomen was easy to install and use, and had excellent repeatability.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

Investigation into the Noise Associated with Airbag Deployment: Part II - Injury Risk Study Using a Mathematical Model of the Human Ear

1998-11-02
983162
Airbag deployments are associated with loud noise of short duration, called impulse noise. Research performed in the late 1960's and early 1970's established several criteria for assessment of the risk of impulse noise-induced hearing loss for military weapons and general exposures. These criteria were modified for airbag noise in the early 1970's, but field accident statistics and experimental results with human volunteers exposed to airbags do not seem to agree with the criteria. More recent research on impulse noise from weapons firing, in particular that of Price & Kalb of the US Army Research Laboratory, has led to development of a mathematical model of the ear. This model incorporates transfer functions which alter the incident sound pressure through various parts of the ear. It also calculates a function, called the “hazard”, that is a measure of mechanical fatigue of the hair cells in the inner ear.
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

Internal vs. External Chest Deformation Response to Shoulder Belt Loading, Part 1: Table-Top Tests

2009-04-20
2009-01-0393
This study presents a detailed comparison of internally and externally measured chest deflections resulting from eight tests conducted on three male post mortem human subjects. A hydraulically driven shoulder belt loaded the anterior thorax under a fixed spine condition while displacement data were obtained via a high-speed 16-camera motion capture system (VICON MX™). Comparison of belt displacement and sternal displacement measured at the bone surface provided a method for quantifying effective change in superficial soft tissue depth at the mid sternum under belt loading. The relationship between the external displacement and the decrease in the effective superficial tissue depth was found to be monotonic and nonlinear. At 65 mm of mid-sternal posterior displacement measured externally, the effective thickness of the superficial tissues and air gap between the belt and the skin had decreased by 14 mm relative to the unloaded state.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

Age Effects on Thoracic Injury Tolerance

1996-11-01
962421
It is well known that the ability of the human body to withstand trauma is a function of its inherent strength, i.e., the strength of the bones and soft tissues. Yet, the properties of the bones and tissues change as a function of the individual's age. In this paper age effects on thoracic injury tolerances are studied by analyzing the mechanical properties of human bones and soft tissues and by examining experimental results found in the literature of thoracic impact tests to human cadavers. This work suggests that the adult age range can be divided into three age groups. Using piece-wise linear regression analyses, it has been determined that the reduction in injury tolerance from the “young” age group to the “elderly” group is approximately 20% under blunt frontal impact loading conditions and is as much as 70% under belt loading conditions.
Technical Paper

Development of a New Standard for Measurement of Impulse Noise Associated With Automotive Inflatable Devices

2005-05-16
2005-01-2398
The SAE Recommended Practice for measuring impulse noise from airbags, SAE J247, “Instrumentation for Measuring Acoustic Impulses within Vehicles”, was first published in 1971 and last affirmed in 1987. Many advances have occurred in understanding and technology since that time. Work in the automotive industry to investigate the characteristics of noise from airbag deployments has shown that large components of low frequency noise can be present when an airbag deploys in a closed vehicle. Others have shown that this low frequency noise can have a protective effect on the ear. Likewise, work for many years at the US Army Research Lab has investigated the risk of hearing loss for a human subjected to an acoustic impulse. That research led to the creation and validation of a mathematical model of the human ear, called Auditory Hazard Assessment Algorithm - Human (AHAAH).
Technical Paper

Elimination of Thoracic Muscle Tensing Effects for Frontal Crash Dummies

2005-04-11
2005-01-0307
Current crash dummy biofidelity standards include the estimated effects of tensing the muscles of the thorax. This study reviewed the decision to incorporate muscle tensing by examining relevant past studies and by using an existing mathematical model of thoracic impacts. The study finds evidence that muscle tensing effects are less pronounced than implied by the biofidelity standard response corridors, that the response corridors were improperly modified to include tensing effects, and that tensing of other body regions, such as extremity bracing, may have a much greater effect on the response and injury potential than tensing of only the thoracic musculature. Based on these findings, it is recommended that muscle tensing should be eliminated from thoracic biofidelity requirements until there is sufficient information regarding multi-region muscle tensing response and the capability to incorporate this new data into a crash dummy.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

Lateral Impact-An Analysis of the Statistics in the NCSS

1985-12-01
851727
Data from the National Crash Severity Study (NCSS) has been analyzed with respect to lateral impacts. Accident variables, vehicle variables, and occupant variables, and their interactions have been considered. Emphasis has been placed on occupant variables, especially occupant injury patterns. This report is mainly a compendium of the data, including a comparison of the NCSS statistics with those from France, Germany, and Great Britain. Overall, these lateral impact statistics are quite similar to results of other field accident studies, which is an interesting observation given the diverse vehicle and driver populations and the differing traffic situations experienced by those populations. Conclusions have been drawn regarding typical lateral impact situations and the effectiveness of seatbelts in lateral impacts.
Technical Paper

Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies

1989-10-01
892440
This paper details the development of an abdominal injury assessment device for loading due to belt restraint submarining in the Hybrid III family of dummies. The design concept and criteria, response criteria, choice of injury criterion, and validation are explained. Conclusions of this work are: 1) Abdominal injury assessment for belt loading due to submarining is now possible in the Hybrid III family of dummies. 2) The abdomen developed has biofidelity in its force deflection characteristics for belt loading, is capable of detecting the occurrence of submarining, and can be used to determine the probability of abdominal injury when submarining occurs. 3) Installation of the abdomen in the Hybrid III dummy does not change the dummy kinematics when submarining does not occur. 4) When submarining does occur, the dummy kinematics are very similar to baseline Hybrid III kinematics, except for torso angle.
X