Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Implications of Engine Start-Stop on After-Treatment Operation

2011-04-12
2011-01-1243
It is commonly accepted that future powertrains will be based to a large extent on hybrid architectures, in order to optimize fuel efficiency and reduce CO₂ emissions. Hybrid operation is typically achieved with frequent engine start-and-stops during real-world as well as during the legislated driving cycles. The cooling of the exhaust system during engine stop may pose problems if the substrate temperature drops below the light-off temperature. Therefore, the design and thermal management of after-treatment systems for hybrid applications should consider the 3-dimensional heat transfer problem carefully. On the other hand, the after-treatment system calculation in the concept design phase is closely linked with engine calibration, taking into account the hybridization strategy. Therefore, there is a strong need to couple engine simulation with 3d aftertreatment predictions.
Technical Paper

Effect of Speed and Speed-Transition on the Formation of Nucleation Mode Particles from a Light Duty Diesel Vehicle

2007-04-16
2007-01-1110
This work studies the formation of nucleation mode (NM) particles from a Euro 3 passenger car operating on 280 ppm wt. sulfur fuel, during on-road plume chasing and in the laboratory. The vehicle produced a distinct NM when its speed exceeded 100 km/h in both sampling environments. A higher particle number (up to 8 times) after 4 min at constant speed was measured when this speed was approached from a lower than from a higher speed. The variability in the measurement of NM particles was explained using literature information on sulfur-to-sulfate conversion over a catalyst and, in particular, on the extent and rate of sulfate storage and release mechanisms. All evidence led to the conclusion that storage and release processes take several minutes to conclude after a step-wise change in speed and have significant implications in the total particle number measurements during steady-speed testing.
Technical Paper

Evaluation of Portable Number Emission Systems for Heavy-Duty Applications under Steady State and Transient Vehicle Operation Conditions on a Chassis Dynamometer

2018-04-03
2018-01-0348
The European Commission plans to introduce a (solid) particle number (PN) emission limit for type approval and in-service conformity (ISC) by the end of 2018 (Euro VI d) using PEMS (Portable Emission Measurement System) tests on heavy duty vehicles on the road. Performance, measurement accuracy and sensitivity of several on-board particle counters for heavy duty applications have not been tested yet in parallel on a chassis dyno with Euro VI vehicle (N3-class, 12.8 l). The PN PEMS examined were CPC (Condensation Particle Counter) and DC (Diffusion Charger) based. Evaluation was conducted at different ambient temperatures from −7 °C to 35 °C while running different test cycles: WHVC (World Harmonized Vehicle Cycle), steady state engine operation, active regeneration and ISC-tests. A particle number system following the current heavy duty regulation requirement and recommendations of the Particle Measurement Program (PMP) served as reference (PMP_TP).
Technical Paper

Assessment of Components Sizing and Energy Management Algorithms Performance for a Parallel PHEV

2022-06-14
2022-37-0015
In Plug in hybrid electric vehicles (PHEVs), the management of the main drivetrain components and the shift between pure electric and hybrid propulsion is decided by the on-board energy management system (EMS). The EMS decisions have a direct impact on CO2 emissions and need to be optimized to achieve as low emissions as possible. This paper presents optimization methods for EMS algorithms of a parallel P2 PHEV. Two different supervisory control algorithms are examined, employing simulations on a validated PHEV platform. An Equivalent Consumption Minimization Strategy (ECMS) algorithm is implemented and compared to a rule-based one, the latter derived by back-engineering of available experimental data. The different EMS algorithms are analyzed and compared on an equal basis in terms of distance, demanded energy and state of charge levels over different driving cycles.
Technical Paper

A Model Based Definition of a Reference CO2 Emissions Value for Passenger Cars under Real World Conditions

2018-05-30
2018-37-0031
With the adoption of the Worldwide harmonized Light Vehicles Test Procedure (WLTP) and the Real Driving Emissions (RDE) regulations for testing and monitoring the vehicle pollutant emissions, as well as CO2 and fuel consumption, the gap between real world and type approval performances is expected to decrease to a large extent. With respect to CO2, however, WLTP is not expected to fully eliminate the reported 40% discrepancy between real world and type approval values. This is mainly attributed to the fact that laboratory tests take place under average controlled conditions that do not fully replicate the environmental and traffic conditions experienced over daily driving across Europe. In addition, any uncertainties of a pre-defined test protocol and the vehicle operation can be optimized to lower the CO2 emissions of the type approval test. Such issues can be minimized in principle with the adoption of a real-world test for fuel consumption.
Technical Paper

Control Algorithms for xEV Powertrain Efficiency and Thermal Comfort

2023-08-28
2023-24-0142
This paper investigates how different on-board energy management system (EMS) algorithms can affect the total energy consumption considering propulsion, heating, ventilation, and air conditioning (HVAC) operation and thermal comfort requirements. Firstly, an integrated plug-in hybrid electric vehicle (PHEV) powertrain and HVAC model including vehicle cabin has been developed as a demonstrator. Two different EMS algorithms - namely a rule-based and an equivalent consumption minimization strategy (ECMS) one - are applied to the integrated PHEV model and evaluated under different environmental conditions. The results showed that the HVAC system operation affects the total energy consumption benefits when ECMS algorithm is used over the rule-based. ECMS reduces the total energy consumption by 2.5% compared to rule-based without HVAC operation, while the total energy consumption reduction changes to 5.3% and 6.3% when HVAC provides heating and cooling power respectively.
Technical Paper

High Mileage Emission Deterioration Factors from Euro 6 Positive and Compression Ignition Vehicles

2022-08-30
2022-01-1028
The current European fleet of vehicles is ageing and lifetime mileages are rising proportionally. Consequently, a substantial fraction of the vehicle fleet is currently operating at mileages well beyond current durability legislation (≤ 160,000 km). Emissions inventories and models show substantial increases in emissions with increasing mileage, but knowledge of the effect of emissions control system deterioration at very high mileages is sparse. Emissions testing has been conducted on matched pairs (or more) of diesel and gasoline (and CNG) vehicles, of low and high mileage, supplementing the results with in-house data, in order to explore high mileage emission deterioration factors (DF). The study isolated, as far as possible, the effect of emissions deterioration with mileage, by using nominally identical vehicle models and controlling other variables.
Technical Paper

The Potential of On-Board Data Monitoring for the Characterization of Real-World Vehicle Fuel and Energy Consumption and Emissions

2023-08-28
2023-24-0113
The upcoming Euro 7 regulation introduces the concept of continuous On-Board (emission) Monitoring (OBM), while On-Board Fuel/Energy Consumption Monitoring (OBFCM) is already an integral part of modern vehicles. The current work aims to assess whether on-board data could provide sufficient information to characterize real-world vehicle performance and emissions. Nine Euro 6d-ISC-FCM passenger cars were used, covering a wide range of powertrain technologies, from conventional gasoline and diesel to hybrid (HEV) and plug-in hybrid (PHEV) electric vehicles. Three vehicles were thoroughly tested in the laboratory and on the road, aiming at evaluating in detail the on-board data monitoring system. The evaluation concerned OBFCM device recordings of fuel consumed and distance travelled, as well as tailpipe NOx emissions and exhaust mass flow rate.
Technical Paper

Definition of a rule-based energy management controller for the simulation of a plug-in hybrid vehicle using power and on-board measured data

2024-06-12
2024-37-0016
Vehicle powertrain electrification is considered one of the main measures adopted by vehicle manufacturers to achieve the CO2 emissions targets. Although the development of vehicles with hybrid and plug-in hybrid powertrains is based on existing platforms, the complexity of the system is significantly increased. As a result, the demands of testing during the development and calibration stages is getting significantly higher. To compensate that, high-fidelity simulation models are used as a cost-effective solution. This paper aims to present the methodology followed for the development of a rule-based energy management controller for a plug-in hybrid electric vehicle (PHEV), and to describe the experimental campaign carried out with this passenger car. The controller is implemented in a vehicle simulation model that is parametrized to replicate the operation of the vehicle.
X