Refine Your Search

Topic

Search Results

Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Effect of Multiple Injection Strategies on Emission and Combustion Characteristics in a Single Cylinder Direct-Injection Optical Engine

2009-04-20
2009-01-1354
The effect of multiple injections in a heavy-duty diesel engine was investigated by focusing on single-pilot injection and double-pilot injection strategies with a wide injection timing range, various injection quantity ratios, and various dwell times. Combustion characteristics were studied through flame visualization and heat release analyses as well as emissions tests. Single-pilot injection resulted in a dramatic reduction in nitrogen oxide and smoke emissions when the injection timing was advanced over 40° CA before the start of injection (BSOI) due to combustion with partially premixed charge compression ignition. A brown-colored flame area, which indicates a very fuel-rich mixture region, was rarely detected when more fuel was injected during single-pilot injection. However, hydrocarbon emission increased up to intolerable levels because fuel wetting on the cylinder wall increased.
Technical Paper

Effects of Multiple Injections in a HSDI Diesel Engine Equipped with Common Rail Injection System

2004-03-08
2004-01-0127
Diesel fuel injection system is the most important part of the direct-injection diesel engine and, in recent years, it has become one of the critical technologies for emission control with the help of electronically controlled fuel injection. Common rail injection system has great flexibility in injection timing, pressure and multi-injections. Many studies and applications have reported the advantages of using common rail system to meet the strict emission regulation and to improve engine performance for diesel engines. The main objective of this study is to investigate the effect of pilot-, post- and multiple-fuel injection strategies on engine performance and emissions. The study was carried out on a single cylinder optical direct injection diesel engine equipped with a high pressure common rail fuel injection system. Spray and combustion evolutions were visualized through a high speed charge-coupled device (CCD) camera.
Technical Paper

Effect of Design Parameters on the Performance of Finned Exhaust Heat Exchanger

2003-10-27
2003-01-3076
This paper describes the results of a DOE (design of experiment) applied to an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of the close-coupled catalytic converter (CCC) to avoid thermal aging. The DOE evaluates the influence of the selected eight design parameters of the heat exchanger geometry on the performance of the exhaust gas cooling system, and the interaction between these parameters. To maximize the heat transfer between exhaust gas and coolant, fins were implemented at the inner surface of the heat exchanger. The design parameters consist of the fin geometry (length, thickness, arrangement, number of fin), coolant direction, exchanger wall thickness, and the length of the heat exchanger. The acceptable range of each design parameter is discussed by analyzing the DOE results.
Technical Paper

Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine

2004-03-08
2004-01-0938
A diesel-fueled premixed charged compression ignition (PCCI) combustion technique using a two-stage injection strategy has been investigated in a single cylinder optical engine equipped with a common-rail fuel system. Although PCCI combustion has the advantages of reducing NOx and PM emissions, difficulties in vaporization of a diesel fuel and control of the combustion phase hinder the development of the PCCI engine. A two-stage injection strategy was applied to relieve these problems. The first injection, named as main injection, was an early direct injection of diesel fuel into the cylinder to achieve premixing with air. The second injection was a diesel injection of a small quantity (1.5 mm3) as an ignition promoter and combustion phase controller near TDC. Effects of injection pressure, injected fuel quantity and compression ratio were studied with variation of an intake air temperature.
Technical Paper

Effects of Stratified EGR on the Performance of a Liquid Phase LPG Injection Engine

2004-03-08
2004-01-0982
Exhaust gas recirculation (EGR) and lean burn utilize the diluents into the engine cylinder to control combustion leading to enhanced fuel economy and reduced emissions. However, the occurrence of excessive cyclic variation with high diluent rates, brings about an undesirable combustion instability within the engine cylinder resulting in the deterioration of both engine performance and emissions. Proper stratification of mixture and diluents could improve the combustion stability under high diluent environment. EGR stratification within the cylinder was made by adopting a fast-response solenoid valve in the midst of EGR line and controlling its timing and duty. With EGR in both homogeneous mode and stratified mode, in-cylinder pressure and emissions were measured. The thermodynamic heat release analysis showed that the burning duration was decreased in case of stratified EGR. It was found that the stratification of EGR hardly affected the emissions.
Technical Paper

Performance of an Liquid Phase LPG Injection Engine for Heavy duty Vehicles

2001-05-07
2001-01-1958
A LPG engine for heavy duty vehicle has been developed using liquid phase LPG injection (hereafter LPLI) system, which has a strong potential as a next generation LPG fuel supply system. It has been revealed in this work that an LPLI system generates higher power, efficiency, and emits lower emission pollutants than the conventional mixer type system. As a preliminary study on the LPLI system applicable to a heavy duty LPG engine, the engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the different fuel supply systems. Experimental results showed that no problems occurred and the volumetric efficiency and engine output increased, respectively by about 10%, when the LPLI system is used. A decrease of the intake manifold temperature by the LPLI system has also been observed.
Technical Paper

Engine Controller for the Hydrocarbon Reduction During Cold Start in SI Engine

2002-05-06
2002-01-1666
In order to reduce hydrocarbon emission in gasoline engine, especially during warming-up period, it is necessary to estimate the fuel and fuel product flow rate in the emission gas. The intake airflow rate should also be estimated. A strategy was proposed to estimate air fuel ratio in a spark ignition engine. The mass of air in the cylinder was determined by filling-emptying method, and the fuel in the intake manifold and cylinder was estimated by the “wall-wetting” effect calculation. The use of graphical dynamic system control software is becoming more popular as automotive engineers strive to reduce the time to develop new control systems. The rapid prototype engine controller has been developed by using MATLAB, SIMULINK, REAL TIME WORKSHOP, xPC Target, and WATCOM C++. The sensor data from the engine will be transferred to computer, and the fuel delivery will be calculated.
Technical Paper

Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine

2002-05-06
2002-01-1677
To meet stringent emission standards, a considerable amount of development work is necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to reduce the engine cold-start emissions. Close-coupled catalyst (CCC) provides fast light-off time by utilizing the energy in the exhaust gas. However, if some malfunction occurred during engine operation and the catalyst temperature exceeds 1050°C, the catalytic converter becomes deactivated and shows poor conversion efficiency. Close-coupled catalyst temperature was investigated under various engine operating conditions. All of the experiments were conducted with a 1.0L SI engine at 1500-4000 rpm. The engine was operated at no load to full load conditions. Exhaust gas temperature and catalyst temperature were measured as a function of lambda value (0.8-1.2), ignition timing (BTDC 30°-ATDC 30°) and misfire rates (0-28%).
Technical Paper

Flame Propagation Characteristics in a Heavy Duty LPG Engine with Liquid Phase Port Injection

2002-05-06
2002-01-1736
Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean burn operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean burn performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using a UV intensified high-speed CCD camera. Concepts of flame area speed, in addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Technical Paper

Fuel Stratification in a Liquid-Phase LPG Injection Engine

2003-05-19
2003-01-1777
To investigate the mixture distributions in an LPG engine with Liquid phase port injection for heavy duty vehicles, an optical single cylinder engine, which is optically accessible both in side and bottom view, and laser diagnostic system were incorporated to apply PLIF (planar laser induced fluorescence) technique. Acetone was used as a dopant in LPG fuel, which was excited by KrF excimer laser (248nm), and its fluorescence images were acquired with ICCD camera. The effects of fuel injection timing, swirl intensity and excess air ratio were investigated. For the case of open valve injection, favorable stratification of fuel, both in axial and radial direction, was clearly observed compared to the closed valve injection, where reverse stratification in axial direction was observed. At the Ricardo swirl ratio of 3.4, it was apparent that excessive axial stratification of fuel got dominant, which would lead to poor engine performances.
Technical Paper

Simulation of Fuel/Air Mixture Formation for Heavy Duty Liquid Phase LPG Injection (LPLI) Engines

2003-03-03
2003-01-0636
Submodels are developed for injection, evaporation and wall impingement of a liquid LPG spray. The injection model determines the quality of fuel as two-phase choke flow at the nozzle exit. Wind tunnel experiments show the spray penetration more sensitive to ambient flow velocity than to injection pressure. Most evaporation occurs during choking, while heat transfer from surrounding air has a negligible effect on downstream droplet sizes. Three dimensional simulation shows that the bathtub cavity is better than the dog-dish cavity for stable flame propagation in lean-burn conditions. The injection timing during the IVC period has a negligible effect, while injection during an intake stroke enhances fuel/air mixing to result in more homogeneous cylinder charge.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

2017-09-04
2017-24-0069
The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
Technical Paper

The Effects of Spark Timing and Equivalence Ratio on Spark-Ignition Linear Engine Operation with Liquefied Petroleum Gas

2012-04-16
2012-01-0424
A prototype of a small, spark-ignition free-piston engine combined with a linear alternator was designed to produce electric power for portable usage. It has a bore size of 25 mm and maximum stroke of 22 mm. The engine was fueled with liquefied petroleum gas consisting of 98% propane. The electric power generated by the linear alternator is a function of the piston dynamics and the electric conductance. Therefore, the purpose of current research is to investigate the effects of the basic engine controlling parameters such as the equivalence ratio of the mixture and the spark timing on the piston dynamics and study the relationship with the electric power generation performance. The equivalence ratio of the mixture was varied from 1.0 to 1.72, while the spark timing was varied at 3, 4, and 5 mm away from the maximum top dead center. Operating characteristics, namely, indicated mean effective pressure, electric power output, operating frequency and piston stroke were analyzed.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Effects of Exhaust Throttling on Engine Performance and Residual Gas in an SI Engine

2004-10-25
2004-01-2974
Combustion in engines can be controlled by the amount of residual gas, which has high temperature and heat capacity compared with fresh charge. Residual gas also acts like a dilution gas during combustion period. Accordingly, combustion duration increases, while the peak combustion temperature and nitrogen oxides (NOx) decreases. Amount of residual gas is affected by pressure difference between exhaust and intake, valve timing and engine speed. The main objective of this work is to identify the effects of exhaust throttle, valve timing and load conditions on residual gas fraction and engine performance. The intake valve open timing was varied freely under fixed exhaust valve close (EVC) timing. Additionally, exhaust throttle has been installed in the exhaust manifold to build up the exhaust back-pressure allowing extra amount of exhaust gases to be admitted into the cylinder during the valve overlap duration.
Technical Paper

Improvements of Thermal and Combustion Efficiencies by Modifying a Piston Geometry in a Diesel/Natural Gas RCCI Engine

2023-04-11
2023-01-0280
To meet the target of the CO2 regulations, it is mandatory to replace high-carbon fossil fuels with low-carbon fuels. Diesel/Natural Gas (NG) reactivity-controlled compression ignition (RCCI) can reduce CO2 emission, which stratifies two types of fuels with different reactivity. And also, RCCI produces less NOx and particulate matter emissions by reducing the in-cylinder temperature. However, RCCI must still be enhanced in terms of the thermal and combustion efficiencies at low and medium loads. In this work, a modified piston geometry was applied to improve the RCCI combustion. The piston geometry was designed to minimize heat loss and reduce flame quenching in an RCCI engine. Experiments were conducted using a single-cylinder engine with a displacement volume of 1,000 cc. Diesel was directly injected into the cylinder, and NG was fed through the intake port.
X