Refine Your Search

Topic

null

Affiliation

Search Results

Journal Article

Experimental Investigation of Fuel Impingement and Spray-Cooling on the Piston of a GDI Engine via Instantaneous Surface Temperature Measurements

2014-04-01
2014-01-1447
In order to comply with more and more stringent emission standards, like EU6 which will be mandatory starting in September 2014, GDI engines have to be further optimized particularly in regard of PN emissions. It is generally accepted that the deposition of liquid fuel wall films in the combustion chamber is a significant source of particulate formation in GDI engines. Particularly the wall surface temperature and the temperature drop due to the interaction with liquid fuel spray were identified as important parameters influencing the spray-wall interaction [1]. In order to quantify this temperature drop at combustion chamber surfaces, surface temperature measurements on the piston of a single-cylinder engine were conducted. Therefore, eight fast-response thermocouples were embedded 0.3 μm beneath the piston surface and the signals were transmitted from the moving piston to the data acquisition system via telemetry.
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Journal Article

Development of an Innovative Combustion Process: Spark-Assisted Compression Ignition

2017-09-04
2017-24-0147
In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, lower cost and new technologies are required in order to maintain its global position both in public and private mobility. For a long time, researchers have been investigating the so called Homogeneous Charge Compression Ignition (HCCI) that promises a higher efficiency due to a rapid combustion - i.e. closer to the ideal thermodynamic Otto cycle - and therefore more work and lower exhaust gas temperatures. Consequently, a rich mixture to cool down the turbocharger under high load may no longer be needed. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, with the potential of reducing HC and CO emissions. However, until recently, HCCI was considered to be reasonably applicable only at part load operating conditions.
Journal Article

In-Situ Measurements of the Piston and Connecting Rod Dynamics Correlated with TEHL-Simulation Techniques

2017-09-04
2017-24-0157
High combustion pressure in combination with high pressure gradient, as they e.g. can be evoked by high efficient combustion systems and e.g. by alternative fuels, acts as broadband excitation force which stimulates natural vibrations of piston, connecting rod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, connecting rod and crankshaft and the main bearings represent the system of internal vibration transfer. To generate exact input and validation values for simulation models of structural dynamic and elasto-hydrodynamic coupled multi-body systems, experimental investigations are done. These are carried out on a 1.5-l inline four cylinder Euro 6 Diesel engine. The modal behaviour of the system was examined in detail in simulation and test as a basis for the investigations. In an anechoic test bench airborne and structure-borne noises and combustion pressure are measured to identify the engine´s vibrational behaviour.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

Predicting the Influence of Charge Air Temperature Reduction on Engine Efficiency, CCV and NOx-Emissions of a Large Gas Engine Using a SI Burn Rate Model

2020-04-14
2020-01-0575
In order to meet increasingly stringent exhaust emission regulations, new engine concepts need to be developed. Lean combustion systems for stationary running large gas engines can reduce raw NOx-emissions to a very low level and enable the compliance with the exhaust emission standards without using a cost-intensive SCR-aftertreatment system. Experimental investigations in the past have already confirmed that a strong reduction of the charge air temperature even below ambient conditions by using an absorption chiller can significantly reduce NOx emissions. However, test bench operation of large gas engines is costly and time-consuming. To increase the efficiency of the engine development process, the possibility to use 0D/1D engine simulation prior to test bench studies of new concepts is investigated using the example of low temperature charge air cooling. In this context, a reliable prediction of engine efficiency and NOx-emissions is important.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Journal Article

Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation

2013-04-08
2013-01-1089
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
Journal Article

Quasi-Dimensional Modeling of CI-Combustion with Multiple Pilot- and Post Injections

2010-04-12
2010-01-0150
A new phenomenological CI combustion model was developed. Within this model the given injection rate may contain an arbitrary number of injections during one cycle. Another target was a short computation time of one second per cycle on average. The new approach should also have the ability to simulate a wide engine spectrum from passenger-car engines through to marine engines. The ignition delay is calculated separately for each single injection. In this way the model depicts the influence of pilot injections on the ignition delay of proximate injections. Each pilot injection is modeled as a single air-fuel mixture cloud with air entrainment. The burn rate of the pilot injection is modeled as a function of flame propagation and of the current local excess air ratio. If the local excess air ratio becomes too lean the pilot combustion stops or does not start at all. Main and post-injections are calculated by means of a slice approach.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Ideal homogeneous combustion versus partly homogeneous combustion for PC diesel engines

2007-09-16
2007-24-0016
Because of its outstanding efficiency, the direct-injection diesel engine is the preferred drive source in many fields. However, its emission behavior, especially with regard to particulate and nitrogen-oxide emissions, is problematic. A promising approach to reducing emissions inside the engine is presented by various (partially) homogeneous diesel combustion processes, which use suitable mixture formation and combustion management to prevent the formation of nitrogen-oxide and soot. In this paper, starting out from an ideally homogeneous combustion process with manifold injection, two further partially homogeneous combustion processes with internal mixture formation are examined. With regard to the maximum obtainable indicated mean effective pressure and the combustion noise, the ideally homogeneous combustion process proved - in the examined configuration - not to be desirable.
Technical Paper

Quasi-dimensional and Empirical Modeling of Compression-Ignition Engine Combustion and Emissions

2010-04-12
2010-01-0151
Two combustion models are presented: A quasi-dimensional approach, based on the injection shape and an empirical model. Both models have computation times of less than one second per cycle. The quasi-dimensional approach for CI combustion discretizes the injection jet in slices. Pilot-injections are modeled as separate zones. The forecast capability and the limitations of the model are discussed on the basis of measurements. Mentioned above the base of the quasi-dimensional model is the injection rate. Often it is difficult to obtain these data. There is therefore another empirical approach for combustion, which does not need the injection rate as input. Both models have to be calibrated. This can be done by an automatic calibration tool on the basis of the advanced Powell method. The differences and advantages compared with other optimization methods are shown. Emission-simulation models are highly important in simulating CI engines.
Technical Paper

Direct Coupled 1D/3D-CFD-Computation (GT-Power/Star-CD) of the Flow in the Switch-Over Intake System of an 8-Cylinder SI Engine with External Exhaust Gas Recirculation

2002-03-04
2002-01-0901
The setting of boundary conditions on the boundaries of a 3D-CFD grid under certain conditions is a source of significant errors. The latter might occur by numerical reflection of pressure waves on the boundary or by incorrect setting of the chemical composition of the gas mixture in recirculation zones (e.g. in the intake manifold of internal combustion engines when the burnt gas from the cylinder enters the intake manifold and passes the boundary of the CDF-grid. When the flow direction is changed the setting of pure new charge on the boundary leads to errors). This type of problems should receive attention in operation points with low engine speed and load. The direct coupling of a 3D-CFD program (Star-CD) with a 1D-CFD program (GT-Power) is done by integration of the 3D-grid of the engine component as a „CFD-component” of the 1D computational model of a complete engine.
Technical Paper

Transient Simulation of Nitrogen Oxide Emissions of CI Engines

2016-04-05
2016-01-1002
This paper presents a quasi-dimensional emission model for calculating the transient nitric oxide emissions of a diesel engine. Using conventional and high-speed measurement technology, steady-state and transient emissions of a V6 diesel engine were examined. Based on measured load steps and steady-state measurements a direct influence of the combustion chamber wall temperature on the nitric oxide emissions was found. Load steps to and from, as well as steady-state measurements down to almost stoichiometric global combustion air ratios were used to examine the behavior of nitric oxide formation under these operating conditions. An existing emission model was expanded in order to represent the direct influence of the combustion chamber wall temperature on the nitric oxide emissions as well as enabling the forecasting of nitric oxide emissions at low global combustion air ratios: Both particularly important aspects for the simulation of transient emissions.
Technical Paper

Investigation of the Gas Exchange (Scavenging) on a Single-Scroll Turbocharged Four Cylinder GDI Engine

2016-04-05
2016-01-1024
For scavenging the combustion chamber during the gas exchange, a temporary positive pressure gradient between the intake and the exhaust is required. On a single-scroll turbocharged four cylinder engine, the positive pressure gradient is not realized by the spatial separation of the exhaust manifold (twin-scroll), but by the use of suitable short exhaust valve opening times. In order to avoid any influence of the following firing cylinder onto the ongoing scavenging process, the valve opening time has to be shorter than 180 °CA. Such a short valve opening time has both, a strong influence on the gas exchange at the low-end torque and at the maximum engine power. This paper analyzes a phenomenon, which occurs due to short exhaust valve opening durations and late valve timings: A repeated compression of the burned cylinder charge after the bottom dead center, referred to as “recompression” in this paper.
Technical Paper

Fuel Injection Analysis with a Fast Response 3D-CFD Tool

2017-09-04
2017-24-0103
Main limiting factor in the application of 3D-CFD simulations within an engine development is the very high time demand, which is predominantly influenced by the number of cells within the computational mesh. Arbitrary cell coarsening, however, results in a distinct distortion of the simulation outcome. It is rather necessary to adapt the calculation models to the new mesh structure in order to ensure reliability and predictability of the 3D-CFD engine simulation. In the last decade, a fast response 3D-CFD tool was developed at FKFS in Stuttgart. It aims for a harmonized interaction between computational mesh, implemented calculation models and defined boundary conditions in order to enable fast running simulations for engine development tasks. Their susceptibility to errors is significantly minimized by various measures, e.g. extension of the simulation domain (full engine) and multi-cycle simulations.
X