Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

High-Speed Characterization of ECN Spray A Using Various Diagnostic Techniques

2013-04-08
2013-01-1616
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray chamber facilities operated at specific target conditions in order to leverage research capabilities and advanced diagnostics of all ECN participants.
Technical Paper

Reducing Engine-Out Emissions for Medium High Speed Diesel Engines: Influence of Injection Parameters

2009-04-20
2009-01-1437
In 2004 the European Parliament ratified the Euro III and IV standards limiting the pollutant emission of, among others, rail and marine diesel engines. In these sectors, it is particularly important to keep any fuel consumption penalty, when reducing emissions, to a strict minimum. Furthermore, exhaust gas after treatment is mostly avoided for cost reasons. Thus, manufacturers are looking to pretreatment of fuels, alternative fuels, and limiting engine-out emissions as ways to attain the required emission levels. This paper discusses the experimental work done on a 1324 kW, 1000 rpm six cylinder marine diesel engine equipped with mechanical unit injectors. The aim was to determine the influence of compression ratio and fuel injection parameters on engine-out emissions, with emphasis on NOx emissions. A range of fuel injection parameters were examined, varying the start of injection, pump plunger diameter, injection pressure, and injector nozzle geometry.
Technical Paper

Studying the Effect of the Flame Passage on the Convective Heat Transfer in a S.I. Engine

2017-03-28
2017-01-0515
Engine optimization requires a good understanding of the in-cylinder heat transfer since it affects the power output, engine efficiency and emissions of the engine. However little is known about the convective heat transfer inside the combustion chamber due to its complexity. To aid the understanding of the heat transfer phenomena in a Spark Ignition (SI) engine, accurate measurements of the local instantaneous heat flux are wanted. An improved understanding will lead to better heat transfer modelling, which will improve the accuracy of current simulation software. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux within a Cooperative Fuel Research (CFR) engine. A two-zone temperature model is linked with the heat flux data. This allows the distinction between the convection coefficient in the unburned and burned zone.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Spray Parameter Comparison between Diesel and Vegetable Oils for Non-Evaporating Conditions

2012-04-16
2012-01-0461
The internal combustion engine with compression ignition is still the most important power plant for heavy duty transport, railway transport, marine applications and generator sets. Fuel cost and emission regulations drive manufacturers to switch to alternative fuels. The understanding and prediction of these fuels in the spray and combustion process will be very important for these issues. In the past, lot of research was done for conventional diesel fuel by optically analyzing both spray and combustion. However comparison between different groups is difficult since qualitative results and accuracies are depending in the used definitions and methods. The goal of present research is to verify the behavior pure oils compared to more standard fuels while paying lot of attention to the interpretation of the measurement results.
Technical Paper

Evaluation of Some Important Boundary Conditions for Spray Measurements in a Constant Volume Combustion Chamber

2013-04-08
2013-01-1610
Fuel atomization and combustion at engine-like conditions are complicated and sensitive processes which make it hard to perform quantitative experiments with high precision and reproducibility. A better understanding of the processes can be obtained by controlling the boundary conditions. Variable parameters with an important influence on the sprays include fuel temperature, chamber temperature, injection pressure, gas velocity. Controlling all these parameters in an experimental setup is not evident since a lot of them fluctuate with time or interact with each other. Constant volume combustion chambers, using the pre-combustion method, have already shown to be a useful experimental tool for this kind of research purposes. The obtained quantitative results can in a next step be used to evaluate either multi-dimensional or simplified lower dimensional models.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Modeling of a Methanol Fueled Direct-Injection Spark-Ignition Engine with Reformed-Exhaust Gas Recirculation

2021-04-06
2021-01-0445
Methanol is a promising fuel for future spark-ignition engines. Its properties enable increased engine efficiency. Moreover, the ease with which methanol can be reformed, using waste exhaust heat, potentially offers a pathway to even higher efficiencies. The primary objective of this study was to build and validate a model for a methanol fueled direct-injection spark-ignition engine with on-board fuel reforming for future investigation and optimization. The second objective was to understand the combustion characteristics, energy losses and engine efficiency. The base engine model was developed and calibrated before adding a reformed-exhaust gas recirculation system (R-EGR). A newly developed laminar burning velocity correlation with universal dilution term was implemented into the model to predict the laminar burning velocity with the presence of hydrogen in the reforming products.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Journal Article

Influence of Injection Strategies on Engine Efficiency for a Methanol PPC Engine

2019-09-09
2019-24-0116
Partially premixed combustion (PPC) is one of several advanced combustion concepts for the conventional diesel engine. PPC uses a separation between end of fuel injection and start of combustion, also called ignition dwell, to increase the mixing of fuel and oxidizer. This has been shown to be beneficial for simultaneously reducing harmful emissions and fuel consumption. The ignition dwell can be increased by means of exhaust gas recirculation or lower intake temperature. However, the most effective means is to use a fuel with high research octane number (RON). Methanol has a RON of 109 and a recent study found that methanol can be used effectively in PPC mode, with multiple injections, to yield high brake efficiency. However, the early start of injection (SOI) timings in this study were noted as a potential issue due to increased combustion sensitivity. Therefore, the present study attempts to quantify the changes in engine performance for different injection strategies.
Technical Paper

Methanol Evaporation in an Engine Intake Runner under Various Conditions

2023-08-28
2023-24-0018
Methanol has recently emerged as a promising fuel for internal combustion engines due to its multiple carbon-neutral production routes and advantageous properties when combusting. Methanol is intrinsically more suitable for spark-ignition (SI) operation thanks to its high octane number, but its potential in heavy-duty applications also encourages engine manufacturers in this field to retrofit their existing compression-ignition products into methanol/diesel dual-fuel (DF) operation. For both SI operation and DF operation, injecting methanol into the engine’s intake path at low pressure is a relatively simple and robust method to introduce methanol into the cylinders. However, the much higher heat of vaporization (HoV) of methanol compared to conventional SI fuels like gasoline can be a double-edged sword.
Technical Paper

Investigation of Supercharging Strategies for PFI Hydrogen Engines

2010-04-12
2010-01-0582
Hydrogen-fueled internal combustion engines (H₂ICEs) are an affordable, practical and efficient technology to introduce the use of hydrogen as an energy carrier. They are practical as they offer fuel flexibility, furthermore the specific properties of hydrogen (wide flammability limits, high flame speeds) enable a dedicated H₂ICE to reach high efficiencies, bettering hydrocarbon-fueled ICEs and approaching fuel cell efficiencies. The easiest way to introduce H₂ICE vehicles is through converting engines to bi-fuel operation by mounting a port fuel injection (PFI) system for hydrogen. However, for naturally aspirated engines this implies a large power penalty due to loss in volumetric efficiency and occurrence of abnormal combustion. The present paper reports measurements on a single-cylinder hydrogen PFI engine equipped with an exhaust gas recirculation (EGR) system and a supercharging set-up.
X