Refine Your Search

Topic

Search Results

Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Technical Paper

Experimental and Numerical Characterization of High-Pressure Methane Jets for Direct Injection in Internal Combustion Engines

2020-09-15
2020-01-2124
Compressed Natural Gas (CNG) is regarded as a promising fuel for spark-ignited (SI) internal combustion engines (ICE) to improve engine thermal efficiency and reduce both carbon dioxide and pollutant emissions. Significant advantages of CNG are higher-octane number, higher hydrogen to carbon ratio, and lower energy-specific CO2 emissions compared with gasoline. More, it can be produced in renewable ways, and is more widespread and cheaper than conventional liquid fossil fuels. In this regard, the direct injection of CNG engines can be considered a promising technology for highly efficient and low-emission future engines. This work reports an experimental and numerical characterization of high-pressure methane jets from a multi-hole injector for direct injection engines.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

A general splash model for direct injection engine multi-dimensional simulation

2007-09-16
2007-24-0022
The interaction between impacting and splashed droplets on the combustion chamber walls and inlet air motion plays a fundamental role in the mixture formation process. It covers a crucial aspect for the correct operation of both DI diesel and gasoline engines as it greatly influences the combustion process and the exhaust emissions. A complete understanding of spray impingement is quite complex. In this paper, a numerical-experimental approach is proposed. On the experimental side, the behaviour of a Diesel impinging spray emerging from a common rail injection system (injection pressures of 80 MPa and 120 MPa) and of a gasoline hollow cone spray generated by a swirled injector (injection pressures up to 10.0 MPa) have been analysed. The impinging spray has been lightened by a pulsed laser sheet generated from the second harmonic of a Nd - YAG laser. The images have been acquired by a CCD camera at different times from the Start of Injection.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
Technical Paper

PIV Investigation of High Swirl Flow on Spray Structure and its Effect on Emissions in a Diesel-Like Environment

2011-04-12
2011-01-1286
The paper presents results of an experimental investigation of the fluid dynamic processes during the air/fuel mixture formation period between an evaporating diesel spray and swirl air flow under realistic engine conditions. Particle Image Velocimetry (PIV) experiments have been carried out using an optically accessible prototype 2-stroke diesel engine equipped with a swirled combustion chamber. The flow within the chamber assumes a well structured swirl motion, similar to that developing in a real diesel engine, operating at high swirl ratio. The engine has been equipped with a common rail injection system and a solenoid-controlled injector, in use on automotive engines for the European market, able to manage multiple injection strategies. Two injector nozzles have been tested: a micro-sac 5-hole nozzle, 0.13 mm diameter, 150° spray angle and a 7-hole, 0.141 mm diameter, 148° spray angle.
Technical Paper

Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines

2017-03-28
2017-01-0840
In the aim of reducing CO2 emissions and fuel consumption, the improvement of the diesel engine performance is based on the optimization of the whole combustion system efficiency. The focus of new technological solutions is devoted to the optimization of thermodynamic efficiency especially in terms of reduction of losses of heat exchange. In this context, it is required a continuous development of the engine combustion system, first of all the injection system and in particular the nozzle design. To this reason in the present paper a new concept of an open nozzle spray was investigated as a possible solution for application on diesel engines. The study concerns some experimental and numerical activities on a prototype of an open nozzle. An external supplier provided the prototypal version of the injector, with a dedicated piezoelectric actuation system, and with an appropriate choice of geometrical design parameters.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

Experimental and Numerical Characterization of Gasoline-Ethanol Blends from a GDI Multi-Hole Injector by Means of Multi-Component Approach

2013-09-08
2013-24-0002
This paper reports an experimental and numerical investigation of the spray structure development for pure gasoline fuel and two different ethanol-gasoline blends (10% and 85% ethanol). A numerical methodology has been developed to improve the prediction of the pure and blends fuel spray. The fuel sprays have been simulated by means of a 3D-CFD code, adopting a multi-component approach for the fuel simulations. The vaporization behavior of the real fuel has been improved testing blends of 7 hydrocarbons and a reduced multi-component model has been defined in order to reduce the computational cost of the CFD simulations. Particular care has been also dedicated to the modeling of the atomization and secondary breakup processes occurring to the GDI sprays. The multi-hole jets have been simulated by means of a new atomization approach combined with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model.
Technical Paper

Investigation of the Effect of Boost Pressure and Exhaust Gas Recirculation Rate on Nitrogen Oxide and Particulate Matter Emissions in Diesel Engines

2013-09-08
2013-24-0017
In recent years, due to the growing problem of environmental pollution and climate change internal combustion engine stroke volume size has been reduced. The use of down-sized engines provides benefit for reducing emissions and fuel consumption especially at the inner city driving conditions. However, when the engine demands additional power, utilizing a turbocharging system is required. This study is a joint work of Istituto Motori CNR with Automotive Laboratory of Mechanical Engineering Faculty of Istanbul Technical University (ITU) and the objective of this study was devoted to increase the understanding of various engine operating conditions on emissions, especially at low load. The trade-off between Nitrogen Oxide (NOx) and Particulate Matter (PM) emissions in a Diesel engine has been examined depending on turbocharging rates and the rate of Exhaust Gas Recirculation (EGR) applied.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Modeling of Diesel Spray Dynamics and Comparison with Experiments

1994-10-01
941895
The capabilities of the Taylor analogy breakup (TAB) and wave breakup (WB) spray models, already existing in the literature, were evaluated in KIVA-II code. Also, a novel droplet deformation and breakup (DDB) model that takes into account the nonlinear effects which manifest at large deformation of the drops was incorporated and tested in KIVA-II. The assessment of the three models was performed by using experimental measurements of tip penetration, spray cone angle and Sauter mean radius (SMR) in a cylindrical optically accessible closed vessel at room temperature and high gas density. High speed photography and laser light extinction techniques were simultaneously used to detect data along a n-heptane jet coming out from a single hole nozzle of 0.20 mm diameter supplied by PE-Bosch injection pump operating in single shot by electro-hydraulical device. The KIVA calculations with TAB model in terms of penetration and SMR do not predict accurately the experiments.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

2013-04-08
2013-01-0249
The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Technical Paper

Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems

2022-03-29
2022-01-0505
Direct injection of gaseous fuels usually involves the presence of under-expanded jets. Understanding the physics of such process is imperative for developing Direct Injection (DI) internal combustion engines fueled, for example, by methane or hydrogen. An experimental-numerical characterization of the under-expanded jets issued from an innovative multi-hole injector, designed for application in heavy-duty engines, is carried out. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and, then, a numerical simulation procedure was validated, allowing a comprehensive injection process analysis. A high-order and density-based solver, capable of reproducing the most relevant features of the under-expanded jets, was developed within OpenFOAM framework. Initially the effects of the upstream-to-downstream pressure ratio, namely Net Pressure Ratios (NPR), on the spray morphology were investigated.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

2018-09-10
2018-01-1694
The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
X