Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Design and Operation of a High Pressure, High Temperature Cell for HD Diesel Spray Diagnostics: Guidelines and Results

2009-04-20
2009-01-0649
This paper first compares strengths and weaknesses of different options for performing optical diagnostics on HD diesel sprays. Then, practical experiences are described with the design and operation of a constant volume test cell over a period of more than five years. In this test rig, pre-combustion of a lean gas mixture is used to generate realistic gas mixture conditions prior to fuel injection. Spray growth, vaporization are studied using Schlieren and Mie scattering experiments. The Schlieren set-up is also used for registration of light emitted by the combustion process; this can also provide information on ignition delay and on soot lift-off length. The paper further describes difficulties encountered with image processing and suggests methods on how to deal with them.
Technical Paper

On the Application of the Flamelet Generated Manifold (FGM) Approach to the Simulation of an Igniting Diesel Spray

2010-04-12
2010-01-0358
A study on the modeling of fuel sprays in diesel engines will be presented. First, modeling of non-reacting diesel spray formation is studied in Fluent and Star-CD. The main objective however is to model combustion of the spray using a generic approach. This is achieved by applying a detailed chemistry tabulation method, called FGM (Flamelet Generated Manifold). Using this approach will make additional ignition modeling, which is conventional, obsolete. The FGM method is implemented in Fluent and Star-CD. Subsequently, constant volume spray combustion and full engine cycle simulations are performed. Spray formation is modeled with Lagrangian type models that are available in Fluent and Star-CD, and also with a 1D Euler-Euler spray model that is implemented and applied in 3D Fluent simulations. The results are compared with EHPC (Eindhoven High Pressure Cell) experiments, data from Sandia National Laboratories and IFP (Institut Français du Pétrole).
Technical Paper

Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion

2017-03-28
2017-01-0750
The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30 °C. Possibly increasing intake air temperatures could extend the load range. In this study primary reference fuels (PRFs), blends of iso-octane and n-heptane, with octane numbers of 70, 80, and 90 are tested in an adapted commercial diesel engine under partially premixed combustion mode to investigate the potential of these higher octane number fuels in low load and idle conditions. During testing combustion phasing and intake air temperature are varied to investigate the combustion and emission characteristics under low load and idle conditions.
Technical Paper

Combustion Stratification for Naphtha from CI Combustion to PPC

2017-03-28
2017-01-0745
This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Effect of Aromatics on Combustion Stratification and Particulate Emissions from Low Octane Gasoline Fuels in PPC and HCCI Mode

2017-09-04
2017-24-0086
The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images.
Technical Paper

Fuel Effect on Combustion Stratification in Partially Premixed Combustion

2017-09-04
2017-24-0089
The literature study on PPC in optical engine reveals investigations on OH chemiluminescence and combustion stratification. So far, mostly PRF fuel is studied and it is worthwhile to examine the effect of fuel properties on PPC. Therefore, in this work, fuel having different octane rating and physical properties are selected and PPC is studied in an optical engine. The fuels considered in this study are diesel, heavy naphtha, light naphtha and their corresponding surrogates such as heptane, PRF50 and PRF65 respectively. Without EGR (Intake O2 = 21%), these fuels are tested at an engine speed of 1200 rpm, fuel injection pressure of 800 bar and pressure at TDC = 35 bar. SOI is changed from late to early fuel injection timings to study PPC and the shift in combustion regime from CI to PPC is explored for all fuels. An increased understanding on the effect of fuel octane number, physical properties and chemical composition on combustion and emission formation is obtained.
Technical Paper

Numerical Investigation of PPCI Combustion at Low and High Charge Stratification Levels

2017-03-28
2017-01-0739
Partially premixed compression ignition combustion is one of the low temperature combustion techniques which is being actively investigated. This approach provides a significant reduction of both soot and NOx emissions. Comparing to the homogeneous charge compression ignition mode, PPCI combustion provides better control on ignition timing and noise reduction through air-fuel mixture stratification which lowers heat release rate compared to other advanced combustion modes. In this work, CFD simulations were conducted for a low and a high air-fuel mixture stratification cases on a light-duty optical engine operating in PPCI mode. Such conditions for PRF70 as fuel were experimentally achieved by injection timing and spray targeting at similar thermodynamic conditions.
Technical Paper

The Impact of Operating Conditions on Post-Injection Efficacy; a Study Using Design-of-Experiments

2018-04-03
2018-01-0229
Post-injection strategies prove to be a valuable option for reducing soot emission, but experimental results often differ from publication to publication. These discrepancies are likely caused by the selected operating conditions and engine hardware in separate studies. Efforts to optimize not only engine-out soot, but simultaneously fuel economy and emissions of nitrogen oxides (NOx) complicate the understanding of post-injection effects even more. Still, the large amount of published work on the topic is gradually forming a consensus. In the current work, a Design-of-Experiments (DoE) procedure and regression analysis are used to investigate the influence of various operating conditions on post-injection scheduling and efficacy. The study targets emission reductions of soot and NOx, as well as fuel economy improvements. Experiments are conducted on a heavy-duty compression ignition engine at three load-speed combinations.
Technical Paper

Modeling Fuel Spray Auto-ignition using the FGM Approach: Effect of Tabulation Method

2012-04-16
2012-01-0157
The Flamelet Generated Manifold (FGM) method is a promising technique in engine combustion modeling to include tabulated chemistry. Different methodologies can be used for the generation of the manifold. Two approaches, based on igniting counterflow diffusion flamelets (ICDF) and homogeneous reactors (HR) are implemented and compared with Engine Combustion Network (ECN) experimental database for the baseline n-heptane case. Before analyzing the combustion results, the spray model is optimized after performing a sensitivity study with respect to turbulence models, cell sizes and time steps. The standard High Reynolds (Re) k-ε model leads to the best match of all turbulence models with the experimental data. For the convergence of the mixture fraction field an appropriate cell size is found to be smaller than that for an adequate spray penetration length which appears to be less influenced by the cell size.
Technical Paper

Modeling of Conventional and Early Diesel Injection Combustion Characteristics using FGM Approach

2013-04-08
2013-01-1108
The wide range of diesel engine operating conditions demand for a robust combustion model to account for inherent changes. In this work, the Flamelet Generate Manifold (FGM) approach is applied, in STAR-CD framework, to simulate the conventional injection- and early injection-timing (PCCI like) combustion regimes. Igniting Counter flow Diffusion Flamelets (ICDFs) and Homogeneous Reactors (HRs) are used to tabulate chemistry for conventional and PCCI combustion modes, respectively. The validation of the models with experimental data shows that the above consideration of chemistry tabulation results in accurate ignition delay predictions. The study reveals that a moderate amount of 5 different pressure levels is necessary to include in the FGM database to capture the ignition delay in both combustion regimes.
Technical Paper

Investigation of Late Stage Conventional Diesel Combustion - Effect of Additives

2018-09-10
2018-01-1787
The accepted model of conventional diesel combustion [1] assumes a rich premixed flame slightly downstream of the maximum liquid penetration. The soot generated by this rich premixed flame is burnt out by a subsequent diffusion flame at the head of the jet. Even in situations in which the centre of combustion (CA50) is phased optimally to maximize efficiency, slow late stage combustion can still have a significant detrimental impact on thermal efficiency. Data is presented on potential late-stage combustion improvers in a EURO VI compliant HD engine at a range of speed and load points. The operating conditions (e.g. injection timings, EGR levels) were based on a EURO VI calibration which targets 3 g/kWh of engine-out NOx. Rates of heat release were determined from the pressure sensor data. To investigate late stage combustion, focus was made on the position in the cycle at which 90% of the fuel had combusted (CA90). An EN590 compliant fuel was tested.
Technical Paper

Comparative Study on the Effects of Inlet Heating, Inlet Boosting, and Double-Injection Strategy on Partially Premixed Combustion

2019-04-02
2019-01-1149
Partially premixed combustion (PPC) is a low temperature combustion (LTC) concept which can relieve soot-NOx trade-off without sacrificing efficiency. However, at low load operating range, PPC with low reactivity fuel generally undergoes long ignition delay, which gives rise to high pressure rise rate, fast heat release and even misfires. To solve these problems and maintain high efficiency simultaneously, inlet heating, inlet boosting and double-injection strategy are experimentally investigated in a heavy-duty engine. BH80 (80vol% n-butanol and 20vol% n-heptane) are blended and tested at 8 bar gIMEP in PPC mode. Inlet heating (from 40oC to 100oC), inlet boosting (from 1.4 bar to 2.5 bar) and a double-injection strategy (pilot/main injection) are attempted to reduce the maximum pressure rise rate (PRRmax). The results show that all three methods can achieve negligible soot emissions. Moreover, a correlation between global temperature at TDC and ignition delay is noticed.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
X