Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro4 Automotive Diesel Engine

2009-09-13
2009-24-0088
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Journal Article

Combination of Pre-EGR Cooler Oxidation Catalyst and Water Vapor Condensation to Mitigate Fouling

2014-04-01
2014-01-0636
Cooled exhaust gas recirculation (EGR) is widely used in diesel engines to control engine out NOx (oxides of nitrogen) emissions. A portion of the exhaust gases is re-circulated into the intake manifold of the engine after cooling it through a heat exchanger known as an EGR cooler. EGR cooler heat exchangers, however, tend to lose efficiency and have increased pressure drop as deposit forms on the heat exchanger surface due to transport of soot particles and condensing species to the cooler walls. In our previous work surface condensation of water vapor was shown to be successful in removing a significant portion of the accumulated deposit mass from various types of deposit layers typically encountered in EGR coolers. Significant removal of accumulated deposit mass was observed for “dry” soot only deposit layers, while little to no removal was observed for the deposit layers created at low coolant temperatures that consisted of both soot and condensed hydrocarbons (HC).
Journal Article

Impact on Performance, Emissions and Thermal Behavior of a New Integrated Exhaust Manifold Cylinder Head Euro 6 Diesel Engine

2013-09-08
2013-24-0128
The integration of the exhaust manifold in the engine cylinder head has received considerable attention in recent years for automotive gasoline engines, due to the proven benefits in: engine weight diminution, cost saving, reduced power enrichment, quicker engine and aftertreatment warm-up, improved packaging and simplification of the turbocharger installation. This design practice is still largely unknown in diesel engines because of the greater difficulties, caused by the more complex cylinder head layout, and the expected lower benefits, due to the absence of high-load enrichment. However, the need for improved engine thermomanagement and a quicker catalytic converter warm-up in efficient Euro 6 diesel engines is posing new challenges that an integrated exhaust manifold architecture could effectively address. A recently developed General Motors 1.6L Euro 6 diesel engine has been modified so that the intake and exhaust manifolds are integrated in the cylinder head.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine

2015-09-06
2015-24-2443
In the last two decades engine research has been mainly focused on reducing pollutant emissions. This fact together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). In this framework, the heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. Thus, the main of objective of the current research was to evaluate the amount of energy lost to soot radiation relative to the input fuel chemical energy during the combustion event under several representative engine loads and speeds. Moreover, the current research characterized the impact of different engine operating conditions on radiation heat transfer.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Journal Article

Spray Formation and Combustion Analysis in an Optical Single Cylinder Engine Operating with Fresh and Aged Biodiesel

2011-04-12
2011-01-1381
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized RME at two levels of blending on spray formation and combustion in modern automotive diesel engines. The tests were performed on an optical single-cylinder engine sharing combustion system configuration with the 2.0L Euro5 GM diesel engine for passenger car application. Two blends (B50 and B100) blending were tested for both fresh and aged RME and compared with commercial diesel fuel in two different operating points typical of NEDC (1500rpm/2bar BMEP and 2000rpm/5bar BMEP). The experimental activity was devoted to an in-depth investigation of the spray density, breakup and penetration, mixture formation, combustion and soot formation, by means of optical techniques.
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Technical Paper

Dynamic Testing of Light Duty Diesel Engine: Characterization of Combustion Parameters Evolution

1991-09-01
911843
A methodological analysis of combustion parameters and pollutant emissions measuring procedures during transient operation of a D.I. T.C. light duty diesel engine was performed. Combustion process was characterized by ignition delay time, combustion pressure peak value and heat release law measurements during the transient ECE 15 schedule on a dynamic test bed with electronic simulation of inertia. The particulate emission was measured every 0.05 s by an I.R. optical method. In addition some correlations, based on pressure cycle and injection law evolution, were implemented in order to calculate instantaneous fuel delivery and transient NOx emission. Some activities were carried out in order to asses the limits of engine configurations ranking performed with steady state measurements of performances and emissions. Strong differences were detected between carbon emission during transient operations and the value obtained by interpolation from a steady state map.
Technical Paper

Diesel Combustion Improvements by the Use of Oxygenated Synthetic Fuels

1997-10-01
972972
In this paper results on in-cylinder pollutant concentration evolution during combustion of six different oxygenated fuels, in comparison with tetradecane and n-octane combustion, are presented. These four fuels are: Ethylene-Glygol-Dimethylether (monoglyme-C4H10O2), Diethylene-Glygol-Dimethylether (diglyme-C6H14O2), Diethylene-Glycol-Diethylether (diethyldiglycol-C8H18O3), butylether (C8H18O). Two techniques were adopted on a single cylinder direct injection diesel engine: two-color pyrometry for the measurement of in-cylinder soot loading and a fast sampling valve for the measurements of in-cylinder combustion products. In addition, the sampling line downstream of the fast sampling valve was adapted for the in-cylinder aldehyde measurements. The main results obtained provide information about the mechanisms that control soot evolution during diesel combustion.
Technical Paper

Evaluation of Combustion Behavior and Pollutants Emission of Advanced Fuel Formulations by Single Cylinder Engine Experiments

1998-10-19
982492
According to the results of several studies concerning the influence of fuel formulation on exhaust emissions from diesel engines, a new matrix of twelve fuels was tested in a single cylinder DI diesel engine of conventional technology. The matrix was designed by the partners of the FLOLEV research project, partly founded by the E.U., in the framework JOULE III program. The aim of the project is to study the influence on pollutants emission reduction of modern refining process and fuel additivation with some alternative fuels and cetane improvers. The fuel matrix is structured into three sub-matrices. The first sub-matrix is constituted by six fuels which represent different products obtainable with the modern refinery technology. The second and third sub-matrices were designed to test the influence of cetane improver additives and high-oxygenated fuels respectively.
Technical Paper

New Trends in Combustion System Design of Light Duty Diesel Engines Inferred by Threedimensional C.F.D. Computations

1998-10-19
982461
In the present paper some results, obtained by the use of modern numerical C.F.D tools, are presented. In particular, starting from the experimental characterization of a conventional design D.I. diesel engine, the empirical constants of the different submodels were tuned to obtain satisfactory results in some key test conditions. After that, in the same points of the engine performance map, the following parameters were systematically varied: Fuel injection system design and operating conditions Intake swirl level Exhaust gas recirculation level. The influence of each parameter on combustion evolution is discussed and the most promising trend for the engine optimization is presented. Taking into account the model formulations limits, the results obtained suggest, from a theoretical point of view, that “common rail” equipped light duty diesel engines are suitable to meet the future European emission regulations.
Technical Paper

Combustion Chamber Design Effects on D.I. Common Rail Diesel Engine Performance

2001-09-23
2001-24-0005
In the present paper the KIVA3V code is used to model the behaviour of different combustion chambers, to be used in Common Rail engines with a single displacement lower than 0.5l. Some design parameters have been chosen to evaluate their influence on the combustion patterns. The optimum levels of turbulence and air mean motion have been selected with reference to some specific points of the engine map, managed by mean of multiple injection. Therefore the different combustion chambers geometries have been numerically investigated in terms of fluidynamic behaviour as well as in terms of combustion evolution. After that some chamber geometries, especially suitable for the second-generation common rail engines, have been selected.
Technical Paper

Design of a small displacement transparent research engine equipped with a common-rail diesel injection system

2001-09-23
2001-24-0021
This paper describes the project of a "small' single-cylinder direct injection diesel engine (300 cc). It is equipped with optical accesses to analyze the diesel combustion process employing the most recent optical diagnostic techniques. The injection system used is a second-generation common- rail system. The optical accesses are placed on the piston and on the cylinder wall.
Technical Paper

Combustion Process Management in Common Rail DI Diesel Engines by Multiple Injection

2001-09-23
2001-24-0007
The improvements of the solenoid injector and of the Electronic Control Unit of the present Common Rail injection system (C.R.) allow the use of multiple sequential injections. Thanks to this feature this advanced Common Rail system is capable to perform up to five consecutive injections in one engine cycle thus improving control of the combustion process. In particular, in some operating conditions, the activation of a small injection after the main one allows the oxidation of the soot produced in the previous stages of the combustion process, without increasing nitrogen oxide emissions. This paper describes the experimental results obtained with the application of a prototype of this advanced Common Rail system both to a Fiat L4 1.9 JTD 8 valve engine and to a single-cylinder prototype, having the same combustion system and large optical access allowing investigation of the injection and combustion processes.
Technical Paper

Diesel Engines Fueled by Wood Pyrolysis Oil: Feasibility and Perspectives

2001-09-23
2001-24-0041
Aim of this paper was to assess the feasibility of the application of wood pyrolysis oil (WPO) as a fuel for medium-duty Diesel engines. The experimental activity was carried out both on a diesel injection system and on a DI Diesel engine. High-speed visualization was used to highlight the spray characteristics and an instrumented test bench to evaluate engine performance and emissions. No modification was carried out on the engine and the efforts were addressed to make the WPO compatible with engine operation. Accordingly, WPO was not tested as a pure fuel, but in blends with diglyme and in emulsions with Diesel fuel.
Technical Paper

Further knowledge on effects of fuels quality changes on emission potential of common-rail D.I. diesel engine

2001-09-23
2001-24-0042
This paper reports some results on the emission performance of a CR DI diesel engine burning five model diesel fuels. The fuels were prepared by Agip Petroli S.p.A within the PNRA research program, sponsored by Italian Ministry of Environment and were a base fuel, a synthetic fuel and three oxygenated fuels. The engine employed in the tests was a prototype derived from Fiat M724 1910 cc, installed on Fiat Group class C Cars (1350 kg of mass). The prototype complies with EURO3 regulations. Two test points representative of two zones of ECE15+EUDC test cycle were chosen. Thermodynamic variables, emissions and injection systems parameters were recorded. Tests show the further potential of advanced fuels, obtained by blends of reformulated and oxygenated components, in reducing pollutants emissions.
X