Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fuel Economy Benefits of a Flywheel & CVT Based Mechanical Hybrid for City Bus and Commercial Vehicle Applications

2009-10-06
2009-01-2868
Hybrid drivetrain systems are becoming increasingly prevalent in Automotive and Commercial Vehicle applications and have also been introduced for the 2009 Formula1 motorsport season. The F1 development has the clear intent of directing technical development in motorsport to impact the key issue of fuel efficiency in mainstream vehicles. In order to promote all technical developments, the type of system (electrical, mechanical, hydraulic, etc) for the F1 application has not been specified. A significant outcome of this action is renewed interest and development of mechanical hybrid systems comprising a high speed composite flywheel and a full-toroidal traction drive Continuously Variable Transmission (CVT). A flywheel based mechanical hybrid has few system components, low system costs, low weight and dispenses with the energy state changes of electrical systems producing a highly efficient and power dense hybrid system.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Investigation of Post-Flame Oxidation of Unburned Hydrocarbons in Small Engines

2011-04-12
2011-01-0141
The post-flame oxidation of unburned hydrocarbons released from the ring-pack crevice was investigated for a small, air-cooled, spark-ignition utility engine. Spark timing sweeps were performed at 50, 75 and 100% load and speeds of 1800, 2400 and 3060 RPM while operating at a 12:1 air-fuel ratio, which is typical for these engines. A global HC consumption rate (GCR) was introduced based on the temporal profile of the mass released from the ring pack; the mass release after CA90 and up to the point where the remainder of the ring pack HC mass is equal to the exhaust HC level was taken as the mass oxidized, and a rate was defined based on this mass and the corresponding crank angle period over which this took place. For all conditions tested, the GCR varied with the spark timing; advanced spark timing gave higher GCR.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Journal Article

An Integrated Design Method for Articulated Heavy Vehicles with Active Trailer Steering Systems

2010-04-12
2010-01-0092
This paper presents an integrated design method for active trailer steering (ATS) systems of articulated heavy vehicles (AHVs). Of all contradictory design goals of AHVs, two of them, i.e. path-following at low speeds and lateral stability at high speeds, may be the most fundamental and important, which have been bothering vehicle designers and researchers. To tackle this problem, a new design synthesis approach is proposed: with design optimization techniques, the active design variables of ATS systems and passive design variables of trailers can be optimized simultaneously; the ATS controller derived from this approach has two operational modes, one for improving lateral stability at high speeds and the other for enhancing path-following at low speeds. To demonstrate the effectiveness of the proposed approach, it is applied to the design of an ATS system for an AHV with a tractor and a full trailer.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Experimental and Analytical Evaluations of a Torsio-Elastic Suspension for Off-Road Vehicles

2010-04-12
2010-01-0643
The ride performance potentials of a prototype torsio-elastic axle suspension for an off-road vehicle were investigated analytically and experimentally. A forestry vehicle was fitted with the prototype suspension at its rear axle to assess its ride performance benefits. Field measurements of ride vibration along the vertical, lateral, fore-aft, roll and pitch axes were performed for the suspended and an unsuspended vehicle, while traversing a forestry terrain. The measured vibration responses of both vehicles were evaluated in terms of unweighted and frequency-weighted rms accelerations and the acceleration spectra, and compared to assess the potential performance benefits of the proposed suspension. The results revealed that the proposed suspension could yield significant reductions in the vibration magnitudes transmitted to the operator's station.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Journal Article

Experimental Investigation of a Control Method for SI-HCCI-SI Transition in a Multi-Cylinder Gasoline Engine

2010-04-12
2010-01-1245
In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition.
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

Electrically Powered Hydraulic Steering On Medium Duty Trucks

2010-10-05
2010-01-1886
Electrically Powered Hydraulic Steering (EPHS) has provided value in passenger car applications by reducing power consumption at engine idle, providing only the required power during high speed lane-keeping, and allowing engine-off operation of vehicles with alternative power sources. This work discusses the design modifications made to use EPHS for medium duty commercial vehicle applications. Configuration options along with communication and diagnostic interface are discussed. Bench tests show the steady-state performance of the system. Experiments are done on a medium duty truck with the EPHS as the sole source of steering power to determine the speed of steer at various vehicle speeds. Finally, the power consumption for the EPHS system is compared to a conventional engine driven pump.
Journal Article

Feasibility Study of a Heavy-duty Tractor - Motorized Semi-trailer Hybrid Electric Combination

2010-10-05
2010-01-1932
The objective of this study was to evaluate the concept of a heavy-duty tractor - motorized semi-trailer hybrid electric combination, which would have electric drive axles on the semi-trailer. The scope of the project included an analysis of the general concept of a power-driven semi-trailer, the positioning of the concept of the heavy-duty tractor - motorized semi-trailer hybrid electric combination in the general context of the technology, and the evaluation of the applicability of the concept for different duty cycles. Several transport activities were analyzed to determine specific duty cycles for heavy-duty vehicles: highway line haul and regional haul, construction haul, and off-highway hauling of raw materials, such as forestry transport with Class 8 and off-highway tractor-trailer combinations.
Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Journal Article

Robust Feedback Tracking Controller Design for Self-Energizing Clutch Actuator of Automated Manual Transmission

2013-10-14
2013-01-2587
This study mainly focuses on developing an accurate tracking controller for the self-energizing clutch actuator (SECA) system consisting of a DC motor with an encoder applied on the automated manual transmission (AMT). In the position-based actuation of the SECA, abruptly increasing torque near the clutch kissing point during the clutch engagement process induces control input saturation and jerky response when a conventional feedback controller is applied. The proposed work resolves such issue and significantly increases the control accuracy of the actuator through the development of an effective H-infinity controller. The control performance is shown to be more effective than a simple PID controller via simulation and experiments using an AMT test bench equipped with SECA aided by d-SPACE and Matlab/Simulink.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Journal Article

Application of Auto-Coding for Rapid and Efficient Motor Control Development

2014-04-01
2014-01-0305
In hybrid and electric vehicles, the control of the electric motor is a critical component of vehicle functions such as motoring, generating, engine-starting and braking. The efficient and accurate control of motor torque is performed by the motor controller. It is a complex system incorporating sensor sampling, data processing, controls, diagnostics, and 3-phase Pulse Width Modulation (PWM) generation which are executed in sub-100 uSec periods. Due to the fast execution rates, care must be taken in the software coding phase to ensure the algorithms will not exceed the target processor's throughput capability. Production motor control development often still follows the path of customer requirements, component requirements, simulation, hand-code, and verification test due to the concern for processor throughput. In the case of vehicle system controls, typically executed no faster than 5-10 mSec periods, auto-coding tools are used for algorithm development as well as testing.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
X